Cho parabol ; y= -x2 và đường thẳng y=mx -1 . Tìm m để đường thẳng cắt parabol tại 2 điiểm có hoành độ x1 ,x2 thỏa mãn x12 x2 + x1x22 - x1x2 =3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi phương trình tiếp tuyến d tại A của parabol có dạng \(y=4x+b\) (\(b\ne5\))
Pt hoành độ giao điểm d và (P):
\(x^2=4x+b\Leftrightarrow x^2-4x-b=0\) (1)
d tiếp xúc (P) \(\Leftrightarrow\) (1) có nghiệm kép
\(\Leftrightarrow\Delta'=4+b=0\Rightarrow b=-4\)
Hoành độ giao điểm: \(x=\frac{4}{2.1}=2\Rightarrow y=4\Rightarrow A\left(2;4\right)\)
Sửa đề: (P): \(y=x^2+5x-6\)
Tọa độ đỉnh của (P) là:
\(\left\{{}\begin{matrix}x=\dfrac{-b}{2a}=-\dfrac{5}{2}\\y=-\dfrac{\text{Δ}}{4a}=-\dfrac{5^2-4\cdot1\cdot\left(-6\right)}{4\cdot1}=-\dfrac{25+24}{4}=-\dfrac{49}{4}\end{matrix}\right.\)
=>Trục đối xứng của (P) là \(x=-\dfrac{5}{2}\)
Tọa độ giao điểm của (P) với trục Ox sẽ là nghiệm của hệ phương trình sau đây:
\(\left\{{}\begin{matrix}x^2+5x-6=0\\y=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}\left(x+6\right)\left(x-1\right)=0\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-6;1\right\}\\y=0\end{matrix}\right.\)
Vậy: Tọa độ các giao điểm của (P) với trục Ox là A(-6;0) và B(1;0)
Thay x = 2 ; y = m vào hàm số y = 1 4 x 2
ta được m = 1 4 . 2 2 = 1 2
Vậy m = 1 2
Đáp án cần chọn là: A
a) Vẽ Parabol P : y = 2 x 2
Bảng giá trị giữa x và y:
x |
-2 |
-1 |
0 |
1 |
2 |
y |
8 |
2 |
0 |
2 |
8 |
Vẽ đúng đồ thị
Do A nằm trên parabol thay tọa độ A vào pt parabol ra được:
\(\dfrac{1}{4}.4^2=m\)
\(\Rightarrow m=4\)
Ta có: \(2p = 8 \Rightarrow p = 4\) nên (P) có tiêu điểm là \(F\left( {2;0} \right)\) và đường chuẩn là \(x = - 2\).
Parabol \(y=x^2-4x+9\) có trục đối xứng là đường thẳng \(x=-\dfrac{b}{2a}=2\)
Nên phép đối xứng trục qua đường thẳng \(x-2=0\) hay \(x=2\) sẽ cho ảnh là chính nó
Hay pt ảnh của (P) vẫn là \(x^2-4x+9\)
ta có pt hđgđ
\(-x^2=mx-1\)
\(\Leftrightarrow x^2+mx-1=0\)
\(\Delta=m^2+4>0\)
theo vi-ét ta có
\(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=-1\end{matrix}\right.\)
\(x^2_1x_2+x_1x_2^2-x_1x_2=3\)
\(\Leftrightarrow x_1x_2\left(x_1+x_2-1\right)=3\)
\(\Rightarrow m=2\)