a,b,c >1
tìm min P=\(\dfrac{a^2}{a-1}+\dfrac{2b^2}{b-1}+\dfrac{3c^2}{c-1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
+\(\dfrac{1}{a}+\dfrac{2}{2b+1}+\dfrac{3}{3c+2}\ge2\)
\(\Rightarrow\dfrac{1}{a}\ge\dfrac{2b-1}{2b+1}+\dfrac{3c-1}{3c+2}\ge2\sqrt{\dfrac{\left(2b-1\right)\left(3c-1\right)}{\left(2b+1\right)\left(3c+2\right)}}\left(1\right)\)
+\(\dfrac{1}{a}+\dfrac{2}{2b+1}+\dfrac{3}{3c+2}\ge2\)
\(\Rightarrow\dfrac{2}{2b+1}\ge\dfrac{a-1}{a}+\dfrac{3c-1}{3c+2}\ge2\sqrt{\dfrac{\left(a-1\right)\left(3c-1\right)}{a\left(3c+2\right)}}\left(2\right)\)
+\(\dfrac{1}{a}+\dfrac{2}{2b+1}+\dfrac{3}{3c+2}\ge2\)
\(\Rightarrow\dfrac{3}{3c+2}\ge\dfrac{a-1}{a}+\dfrac{2b-1}{2b+1}\ge2\sqrt{\dfrac{\left(a-1\right)\left(2b-1\right)}{a\left(2b+1\right)}}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow6\ge8\left(a-1\right)\left(2b-1\right)\left(3c-1\right)\)
\(\Rightarrow P=\left(a-1\right)\left(2b-1\right)\left(3c-1\right)\le\dfrac{3}{4}\)
\(\Rightarrow P_{max}=\dfrac{3}{4}\) đạt tại \(a=\dfrac{3}{2};b=1;c=\dfrac{5}{6}\)
Ta có:\(\dfrac{1}{1+ab}+\dfrac{1}{1+bc}+\dfrac{1}{1+ac}\ge\dfrac{9}{1+1+1+ab+bc+ca}\)(AM-GM)
Lại có:\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
\(\Rightarrow\dfrac{9}{3+ab+bc+ca}\ge\dfrac{9}{3+a^2+b^2+c^2}=\dfrac{9}{6}=\dfrac{3}{2}\)
\(\Rightarrowđpcm\)
Cháu làm cho bác câu 2 thôi,câu 3 THANGDZ làm rồi sợ mất bản quyền lắm:v
Lời giải:
Áp dụng liên tiếp bất đẳng thức AM-GM và Cauchy-Schwarz ta có:
\(\dfrac{a}{a+2b+3c}+\dfrac{b}{b+2c+3a}+\dfrac{c}{c+2a+3b}\)
\(=\dfrac{a^2}{a^2+2ab+3ac}+\dfrac{b^2}{b^2+2bc+3ab}+\dfrac{c^2}{c^2+2ac+3bc}\)
\(\ge\dfrac{\left(a+b+c\right)^2}{a^2+b^2+c^2+5ab+5bc+5ac}\)
\(=\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+3\left(ab+bc+ac\right)}\ge\dfrac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2+\left(a+b+c\right)^2}=\dfrac{1}{2}\)
Đặt \(\left(a;2b;3c\right)=\left(x;y;z\right)\Rightarrow x+y+z=3\)
\(Q=\dfrac{x+1}{1+y^2}+\dfrac{y+1}{1+z^2}+\dfrac{z+1}{1+x^2}\)
Ta có:
\(\dfrac{x+1}{1+y^2}=x+1-\dfrac{\left(x+1\right)y^2}{1+y^2}\ge x+1-\dfrac{\left(x+1\right)y^2}{2y}=x+1-\dfrac{\left(x+1\right)y}{2}\)
Tương tự:
\(\dfrac{y+1}{1+z^2}\ge y+1-\dfrac{\left(y+1\right)z}{2}\) ; \(\dfrac{z+1}{1+x^2}\ge z+1-\dfrac{\left(z+1\right)x}{2}\)
Cộng vế:
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{2}\left(xy+yz+zx\right)\)
\(Q\ge\dfrac{x+y+z}{2}+3-\dfrac{1}{6}\left(x+y+z\right)^2=\dfrac{3}{2}+3-\dfrac{9}{6}=3\)
\(Q_{min}=3\) khi \(x=y=z=1\) hay \(\left(a;b;c\right)=\left(1;\dfrac{1}{2};\dfrac{1}{3}\right)\)
Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)
Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\)
Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)
CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)
\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)
Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)
Dấu = xảy ra khi a=b=c=3
Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)
\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)
\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)
\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)
\(=9a^2b^2-2ab+48\)
Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)
Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)
\(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)
\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)
Vậy...
b) Ta có : \(\dfrac{2a}{3}=\dfrac{3b}{4}=\dfrac{4c}{5}\)
\(\Leftrightarrow\dfrac{a}{\dfrac{3}{2}}=\dfrac{b}{\dfrac{4}{3}}=\dfrac{c}{\dfrac{5}{4}}=\dfrac{a+b+c}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Khi đó \(a=12.\dfrac{3}{2}=18;b=12.\dfrac{4}{3}=16;c=12.\dfrac{5}{4}=15\)
Vậy (a,b,c) = (18,16,15)
Ta có:
1+a2 = ab+bc+ca+a2 = a(a+b)+c(a+b)=(a+b)(a+c)
Tương tự: 1+b2 = (b+c)(b+a)
1+c2 = (c+a)(c+b)
\(\Rightarrow\) P = \(2a\sqrt{\dfrac{1}{\left(a+b\right)\left(a+c\right)}}+2b\sqrt{\dfrac{1}{\left(b+c\right)\left(b+a\right)}}+2c\sqrt{\dfrac{1}{\left(c+a\right)\left(c+b\right)}}\)
Áp dụng BĐT Cô-si ta có:
P\(\le\)\(a\left(\dfrac{1}{a+b}+\dfrac{1}{a+c}\right)+b\left(\dfrac{1}{4\left(b+c\right)}+\dfrac{1}{b+a}\right)+c\left(\dfrac{1}{4\left(c+b\right)}+\dfrac{1}{c+a}\right)\)\(\le\)\(\dfrac{a}{a+b}+\dfrac{a}{a+c}+\dfrac{b}{4\left(b+c\right)}+\dfrac{b}{b+a}+\dfrac{c}{4\left(c+b\right)}+\dfrac{c}{c+a}\)
= \(\dfrac{1}{4}+2=\dfrac{9}{4}\)
\(\Rightarrow\)Pmin = \(\dfrac{9}{4}\)
Dấu "=" xảy ra\(\Leftrightarrow\) b=c=\(\dfrac{a}{7}\)=\(\dfrac{\sqrt{15}}{15}\) \(\Rightarrow\) a = \(\dfrac{7\sqrt{15}}{15}\)
Áp dụng bất đẳng thức Cauchy-Schwarz:\(\left\{{}\begin{matrix}\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}\ge\dfrac{\left(1+1\right)^2}{a+2b+c+c+3a}=\dfrac{4}{4a+2b+2c}=\dfrac{2}{c+2a+b}\\\dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}\ge\dfrac{\left(1+1\right)^2}{b+2c+a+a+3b}=\dfrac{4}{4b+2c+2a}=\dfrac{2}{a+2b+c}\\\dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}\ge\dfrac{\left(1+1\right)^2}{c+2a+b+b+3c}=\dfrac{4}{4c+2a+2b}=\dfrac{2}{b+2c+a}\end{matrix}\right.\)
Cộng theo vế ta có:
\(\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}+\dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}+\dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}\ge\dfrac{2}{c+2a+b}+\dfrac{2}{a+2b+c}+\dfrac{2}{b+2c+a}\)
Hay \(\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\le\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\left(đpcm\right)\)
Áp dụng BĐT Cô si dạng Engel ; ta có :
\(\dfrac{1}{a+2b+c}+\dfrac{1}{c+3a}\ge\dfrac{\left(1+1\right)^2}{\left(a+2b+c\right)+\left(c+3a\right)}=\dfrac{4}{4a+2b+2c}=\dfrac{2}{2a+b+c}\\ \dfrac{1}{b+2c+a}+\dfrac{1}{a+3b}\ge\dfrac{\left(1+1\right)^2}{\left(b+2c+a\right)+\left(a+3b\right)}=\dfrac{4}{4b+2c+2a}=\dfrac{2}{2b+c+a}\\ \dfrac{1}{c+2a+b}+\dfrac{1}{b+3c}\ge\dfrac{\left(1+1\right)^2}{\left(c+2a+b\right)+\left(b+3c\right)}=\dfrac{4}{4c+2a+2b}=\dfrac{2}{2c+a+b}\)
\(\Rightarrow\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}+\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{2}{a+2b+c}+\dfrac{2}{b+2c+a}+\dfrac{2}{c+2a+b}\\ \Rightarrow\dfrac{1}{a+3b}+\dfrac{1}{b+3c}+\dfrac{1}{c+3a}\ge\dfrac{1}{a+2b+c}+\dfrac{1}{b+2c+a}+\dfrac{1}{c+2a+b}\)
Áp dụng bất đẳng thức cô si cho hai số thực không âm ta có :
\(\dfrac{a^2}{a-1}+4\left(a-1\right)\ge2\sqrt{\dfrac{a^2}{a-1}\times4\left(a-1\right)}=4a\) (1)
\(\dfrac{2b^2}{b-1}+8\left(b-1\right)\ge2\sqrt{\dfrac{2b^2}{b-1}\times8\left(b-1\right)}=8b\) (2)
\(\dfrac{3c^2}{c-1}+12\left(c-1\right)\ge2\sqrt{\dfrac{3c^2}{c-1}\times12\left(c-1\right)}=12c\) (3)
Cộng (1),(2) và (3) vế theo vế ta được :\(P+4a+8b+12c-24\)\(\ge4a+8b+12c\)
\(\Leftrightarrow P\ge24\)
Dấu "=" xảy ra khi :a=b=c=2
Vậy giá trị nhỏ nhất của P=\(\dfrac{a^2}{a-1}+\dfrac{2b^2}{b-1}+\dfrac{3c^2}{c-1}\) là 24 khi a=b=c=2
P=\(\dfrac{a^2-1+1}{a-1}+\dfrac{2b^2-2+2}{b-1}+\dfrac{3c^2-3+3}{c-1}\)
=\(\left(a+1+\dfrac{1}{a-1}\right)+\left(2\left(b+1\right)+\dfrac{2}{b-1}\right)+\left(3\left(c+1\right)+\dfrac{3}{c-1}\right)\)
=\(\left(a-1+\dfrac{1}{a-1}\right)+\left(2\left(b-1\right)+\dfrac{2}{b-1}\right)+\left(3\left(c-1\right)+\dfrac{3}{c-1}\right)+12\)áp dụng cosi là đc