2[(y+21)+(x+10)]=2862. Tìm x,y
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{4}{x}=\dfrac{y}{21}=\dfrac{28}{49}=\dfrac{28:7}{49:7}=\dfrac{4}{9}\\ Vậy:x=\dfrac{4.9}{4}=9\\ y=\dfrac{4.21}{9}=\dfrac{28}{3}\)
\(\dfrac{x}{2}=\dfrac{3}{y}\\ \Leftrightarrow x.y=2.3=6\\ Vậy:\left[{}\begin{matrix}\left(x;y\right)=\left(1;6\right)=\left(6;1\right)\\\left(x;y\right)=\left(2;3\right)=\left(3;2\right)\end{matrix}\right.\)
Theo bài ra ta có :
\(\frac{x}{y}=\frac{10}{3}\Rightarrow\frac{x}{10}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x}{10}=\frac{y}{3}=\frac{y-x}{3-10}=\frac{21}{-7}=-3\)
Nên \(\frac{x}{10}=-3\Rightarrow x=-30\)
\(\frac{y}{3}=-3\Rightarrow y=-9\)
x/y=10/3=>x/10=y/3
mà y-x=3=>(y-x)/(3-10)=21/(-7)=-3
=>x=(-3)*10=-30
=>y=(-3)*3=-9
x : 2 = y : 5 hay \(\frac{x}{2}=\frac{y}{5}\)
Ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3\)
\(\Rightarrow x=3.2=6\) và \(y=3.5=15\)
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}=\dfrac{x-2y+3z}{2-2\cdot3+3\cdot5}=\dfrac{33}{11}=3\)
Do đó: x=6; y=9; z=15
1. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+2}{3}=\frac{y-7}{5}=\frac{x+y-5}{3+5}=\frac{16}{8}=2\Rightarrow\hept{\begin{cases}x+2=6\\y-7=10\end{cases}\Leftrightarrow\hept{\begin{cases}x=4\\y=17\end{cases}}}\)
2. áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x+5}{2}=\frac{y-2}{3}=\frac{x+5-y+2}{2-3}=\frac{-10+7}{-1}=3\Rightarrow\hept{\begin{cases}x+5=6\\y-2=9\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=11\end{cases}}\)
đề hết chưa bạn ơi ?
<=> 2(x+y) =2800
<=> x+y=1400
=> x=1400-y
thay trở lại đề bài, ta nhận được y=0 =>x=1400