K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 4 2018

Ta có : \(\Delta=\left(2m-1\right)^2+1>0\)

nên pt luôn có 2 nghiệm phân biệt là x1 và x2 

Theo ĐL Vi-ét ta có : \(\hept{\begin{cases}x_1+x_2=2m\\x_1\cdot x_2=\frac{2m-1}{2}\end{cases}}\)=> \(4m^2=x_1^2+2x_1x_2+x_2^2\) => \(2m^2=\frac{x_1^2+2x_1x_2+x_2^2}{2}\)

=> tìm m để thoả mãn \(2x_1^2+2\cdot2mx_2+2m^2-9=2x_1^2+2\left(x_1+x_2\right)\cdot x_2+\frac{x_1^2+2x_1x_2+x_2^2}{2}-9< 0\)

<=> \(4x_1^2+4x_1x_2+4x_2^2+x_1^2+2x_1x_2+x_2^2-18< 0\)

<=> \(5x_1^2+6x_1x_2+5x_2^2-18< 0\)

<=> \(3\left(x_1+x_2\right)^2+2\left(x_1+x_2\right)-18< 0\)

<=> \(2m\left(6m+2\right)-18< 0\)

Bn tự giải tiếp nha :D

NV
19 tháng 2 2022

\(\Delta'=4m^2-2\left(2m^2-1\right)=2>0\Rightarrow\) pt luôn có 2 nghiệm pb

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=\dfrac{2m^2-1}{2}\end{matrix}\right.\)

Do \(x_1\) là nghiệm nên:

\(2x_1^2-4mx_1+2m^2-1=0\Rightarrow x_1^{2014}\left(2x_1^2-4mx_1+2m^2-1\right)=0\)

Do \(x_2\) là nghiệm nên:

\(2x_2^2-4mx_2+2m^2-1=0\Rightarrow2x_2^2+2m^2-1=4mx_2\)

Bài toán trở thành:

\(\left(0+1\right)\left(4mx_2+4mx_1-8\right)< 0\)

\(\Leftrightarrow m\left(x_1+x_2\right)-2< 0\)

\(\Leftrightarrow2m^2-2< 0\)

\(\Leftrightarrow-1< m< 1\)

7 tháng 4 2020

Đề bài 1 có nhầm chỗ nào không bạn ???

Bài 3 : 

( x2 + ax + b )( x2 + bx + a ) = 0 \(\Leftrightarrow\orbr{\begin{cases}x^2+ax+b=0\left(^∗\right)\\x^2+bx+a=0\left(^∗^∗\right)\end{cases}}\)

\(\left(^∗\right)\rightarrow\Delta=a^2-4b,\)Để phương trình có nghiệm thì  \(a^2-4b\ge0\Leftrightarrow a^2\ge4b\Leftrightarrow\frac{1}{a}\ge\frac{1}{2\sqrt{b}}\left(3\right)\)

\(\left(^∗^∗\right)\rightarrow\Delta=b^2-4a\), Để phương trình có nghiệm thì \(b^2-4a\ge0\Leftrightarrow\frac{1}{b}\ge\frac{1}{2\sqrt{a}}\left(4\right)\)

Cộng ( 3 ) với ( 4 ) ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}\)

<=> \(\frac{1}{2\sqrt{a}}+\frac{1}{2\sqrt{b}}< \frac{1}{2}\Leftrightarrow\frac{1}{4a}+\frac{1}{4b}< \frac{1}{4}\Leftrightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)< \frac{1}{4}\Leftrightarrow\frac{1}{8}< \frac{1}{4}\)( luôn luôn đúng với mọi a ,b ) 

7 tháng 4 2020

B3 tui lm đc r, bn lm nhìn rối thế @@ Đề bài ko sai đâu hết nhé bn

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Lời giải:

PT có 2 nghiệm pb khi:

$\Delta'=m^2+m(2m+1)>0\Leftrightarrow m(3m+1)>0\Leftrightarrow m>0$ hoặc $m< \frac{-1}{3}(*)$

Theo định lý Viet: \(\left\{\begin{matrix} x_1+x_2=2\\ x_1x_2=\frac{-(2m+1)}{m}\end{matrix}\right.\) . Khi đó:

$x_1^2+2x_1x_2^2+3x_2^2=4x_1+5x_2-1$

$\Leftrightarrow (x_1+x_2)^2+2x_2^2=4(x_1+x_2)+x_2-1$

$\Leftrightarrow 4+2x_2^2=7+x_2$

$\Leftrightarrow 2x_2^2-x_2-3=0$

$\Leftrightarrow x_2=\frac{3}{2}$ hoặc $x_2=-1$

$x_2=\frac{3}{2}$ thì $x_1=\frac{1}{2}$

$\frac{-(2m+1)}{m}=x_1x_2=\frac{3}{4}\Leftrightarrow m=\frac{-4}{11}$
$x_2=-1$ thì $x_1=3$

$\frac{-(2m+1)}{m}=x_1x_2=-3\Leftrightarrow m=1$

(hai giá trị trên đều thỏa mãn)

13 tháng 3 2021

Ohh em làm cách khác vẫn ra thế này! Thầy nhiệt tình thật !

16 tháng 2 2021

a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)

\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)

\(\Leftrightarrow-1< m< \dfrac{5}{2}\)

b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)

Phương trình đã cho có nghiệm duy nhất

TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)

Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)

\(\Leftrightarrow m^2-3m+2>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)

Vậy \(m>2\) hoặc \(m< 1\)

16 tháng 2 2021

c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)

Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)

Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)

Vậy \(0< m< 1\)