K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2017

sin2x - sinx = 0 ⇔ sinx(sinx - 1) = 0

Th1. sinx=0 \(\Leftrightarrow\) x=kπ \(\left(k\in Z\right)\)

Th2.  sinx=1\(\Leftrightarrow\)  x= \(\dfrac{\text{π}}{2}\) + \(\text{k 2 π}\)\(\left(k\in Z\right)\)
Vậy phương trình có hai họ nghiệm là: 
\(x=k\pi\) và \(x=\dfrac{\pi}{2}+k2\pi\)  với \(\left(k\in Z\right)\)


 

 

tham khảo:

x ∈ {2*pi*k, 2*pi*k-2*pi/3, 2*pi*k-pi/3, 2*pi*k+pi/3, 2*pi*k+2*pi/3, 2*pi*k+pi}, k ∈ Z

 
2 tháng 9 2021

(sinx + sin5x) + (sin2x + sin4x) + 4sin3x = 0

⇔ 2sin3x . cos2x + 2sin3x . cosx + 4sin3x = 0

⇔ 2sin3x (cos2x + cosx + 2sin3x) = 0

⇔ \(\left[{}\begin{matrix}sin3x=0\left(1\right)\\cos2x+cosx+2sin3x=0\left(2\right)\end{matrix}\right.\)

(1) ⇔ ...

(2) ⇔ \(2cos\dfrac{3x}{2}.cos\dfrac{x}{2}+4sin\dfrac{3x}{2}.cos\dfrac{3x}{2}=0\)

⇔ \(\left[{}\begin{matrix}cos\dfrac{3x}{2}=0\left(\alpha\right)\\cos\dfrac{x}{2}+2sin\dfrac{3x}{2}=0\left(\beta\right)\end{matrix}\right.\)

Giải \(\left(\alpha\right)\) quá đơn giản

Giải \(\left(\beta\right)\) 

\(2\left(3sin\dfrac{x}{2}-4sin^3\dfrac{x}{x}\right)+cos\dfrac{x}{2}=0\)

⇔ \(-8sin^3\dfrac{x}{2}+6sin\dfrac{x}{2}\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)+cos\dfrac{x}{2}.\left(sin^2\dfrac{x}{2}+cos^2\dfrac{x}{2}\right)=0\)

⇔ \(-2sin^3\dfrac{x}{2}+6sin\dfrac{x}{2}.cos^2\dfrac{x}{2}+sin^2\dfrac{x}{2}.cos\dfrac{x}{2}+cos^3\dfrac{x}{2}=0\) 

Xét \(x=k2\pi,k\in Z\) tức \(sin\dfrac{x}{2}=0\) có thỏa mãn phương trình không, nếu có kết luận về nghiệm 

Dù trường hợp trên có thỏa mãn hay không thì tiếp tục xét trường hợp nữa là \(x\ne k2\pi,k\in Z\) tức \(sin\dfrac{x}{2}\ne0\). Rồi chia cả 2 vế phương trình lằng nhằng kia cho \(sin\dfrac{x}{2}\) và đưa về phương trình bậc 3 theo cot\(\dfrac{x}{2}\)

 

 

17 tháng 9 2023

\(sin^23x.cos2x+sin^2x=0\)

\(\left(3sinx-4sin^3x\right)^2.cos2x+sin^2x=0\)

\(sin^2x\left[\left(3-4sin^2x\right)^2.cos2x+1\right]=0\)

\(sin^2x\left[\left(1+2cos2x\right)^2.cos2x+1\right]=0\)

\(sin^2x\left(4cos^22x+1\right)\left(cos2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\\cos2x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k\text{π}\\2x=k2\text{π}\end{matrix}\right.\)\(\Leftrightarrow x=k\text{π}\)

17 tháng 9 2023

Ha Hoang                                                         , bn ơi từ dòng 4 chuyển sang dòng 5 làm kiểu gì vậy ạ???

18 tháng 9 2016

cây a) bạn xét 2 TH :

  •  cosx=0<=> x= pi/2+k.pi.  k là nghiệm pt
  • cosx khác 0. chia 2 vế cho cosx^2 ta được pt bậc hai với hàm tan rồi giải ra như bình thường

b) bạn sd công thức hạ bậc là xong r

18 tháng 9 2016

hmm, giống mạng qué

10 tháng 11 2023

 

\(sin\left(2x+\dfrac{\Omega}{2}\right)=sin\left(x-\dfrac{\Omega}{3}\right)\)

=>\(\left[{}\begin{matrix}2x+\dfrac{\Omega}{2}=x-\dfrac{\Omega}{3}+k2\Omega\\2x+\dfrac{\Omega}{2}=\Omega-x+\dfrac{\Omega}{3}+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-\dfrac{5}{6}\Omega+k2\Omega\\3x=\dfrac{4}{3}\Omega-\dfrac{1}{2}\Omega+k2\Omega\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=-\dfrac{5}{6}\Omega+k2\Omega\\x=\dfrac{5}{18}\Omega+\dfrac{k2\Omega}{3}\end{matrix}\right.\)

10 tháng 11 2023

4/3pi -1/2pi + k2pi

là tính như thế nào mà ra được ạ ?

 

AH
Akai Haruma
Giáo viên
11 tháng 11 2023

Lời giải:

$\sin (2x+\frac{\pi}{2})=\sin (x-\frac{\pi}{3})$

\(\Rightarrow \left[\begin{matrix}\ 2x+\frac{\pi}{2}=x-\frac{\pi}{3}+2k\pi\\ 2x+\frac{\pi}{2}=\pi -(x-\frac{\pi}{3})+2k\pi\end{matrix}\right.\)

\(\Rightarrow \left[\begin{matrix}\ x=\pi (2k-\frac{5}{6})\\ x=\frac{1}{3}\pi (\frac{5}{6}+2k)\end{matrix}\right.\) với $k$ nguyên bất kỳ.