K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2024

a; (n + 10)(n + 15)

+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2

+ Nếu n là số lẻ ta có: n + 15 là số chẵn 

⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2 

Từ những lập luận trên ta có:

A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N

2 tháng 4 2017

 vì 1 trong 2 thừa số n và 7n+1 là số chẵn]

=>n.(2n+1)(7n+1) \(⋮\)2

với n có dạng 3k thì n\(⋮\)3

với n có dạng 3k1 thì2n+1\(⋮\)3

với n cá dạng 3k+2 thì 7n+1\(⋮\)3

vậy n\(⋮\)3 với mọi n

2 tháng 4 2017

CHÚC BẠN HỌC GIỎI

7 tháng 12 2019

a/

+ Nếu n chẵn (n+10) chẵn => n+10 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

+ Nếu n lẻ thì (n+15) chẵn => n+15 chia hết cho 2 => (n+10)(n+15) chia hết cho 2

b/ 

n(n+1)(2n+1) chi hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n(n+1)(2n+1) chia hết cho 2

+ Nếu n lẻ => n+1 chẵn => n+1 chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2

=> n(n+1)(2n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 => n+2 chia hết cho 3 => 2(n+2)=2n+4=2n+1+3 chia hết cho 3 mà 3 chia hết cho 3 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3

=> n(n+1)(2n+1) chia hết cho 3 với mọi n

=> n(n+1)(2n+1) chia hết cho 6 vơi mọi n

c/

n(2n+1)(7n+1) chia hết cho 6 khi đồng thời chia hết cho 2 và cho 3

+ Nếu n chẵn => n chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

+ Nếu n lẻ => 7n lẻ => 7n+1 chẵn => 7n+1 chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2

=> n(2n+1)(7n+1) chia hết cho 2 với mọi n

+ Nếu n chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => 10(n+1)=10n+10=(7n+1)+(3n+9)=(7n+1)+3(n+3) chia hết cho 3

Mà 3(n+3) chia hết cho 3 => 7n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

+ Nếu n chia 3 dư 1 chứng minh tương tự câu (b) => 2n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3

=> n(2n+1)(7n+1) chia hết cho 3 với mọi n

=> n(2n1)(7n+1) chia hết cho 6 với mọi n

17 tháng 4 2018

khó quá

AH
Akai Haruma
Giáo viên
19 tháng 10 2019

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

AH
Akai Haruma
Giáo viên
3 tháng 10 2019

Lời giải:

* CM $A$ chia hết cho $2$

Ta thấy $(7n+1)-n=6n+1$ lẻ, chứng tỏ $7n+1,n$ luôn khác tính chẵn lẻ.

Do đó luôn tồn tại 1 trong 2 số là chẵn

$\Rightarrow A=n(2n+1)(7n+1)$ chẵn, hay $A\vdots 2(*)$

* CM $A$ chia hết cho $3$. Xét modulo $3$ cho $n$:

Nếu $n=3k(k\in\mathbb{Z}$

$\Rightarrow n\vdots 3\Rightarow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+1\Rightarrow 2n+1=2(3k+1)+1=3(2k+1)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Nếu $n=3k+2\Rightarrow 7n+1=7(3k+2)+1=3(7k+5)\vdots 3$

$\Rightarrow A=n(2n+1)(7n+1)\vdots 3$

Vậy tóm lại $A\vdots 3(**)$

Từ $(*); (**), mà $(2,3)=1$ nên $A\vdots (2.3)$ hay $A\vdots 6$ (đpcm)

8 tháng 6 2019

Vì (7n + 1) - n = 6n + 1 là số lẻ nên trong hai số 7n + 1 và n có đúng một số chẵn \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 2 (1)

Xét 3 TH:

+) n = 3k (k \(\in\) N): Khi đó n \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3

+) n = 3k + 1 (k \(\in\) N): Khi đó 2n + 7 = 2(3k + 1) + 7 = 6k + 9 \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3

+) n = 3k + 2 (k \(\in\) N): Khi đó 7n + 1 = 7(3k + 2) + 1 = 21k + 15 \(⋮\) 3 \(\Rightarrow\) A = n(2n + 7)(7n + 1) \(⋮\) 3

Từ đó suy ra A = n(2n + 7)(7n + 1) \(⋮\) 3 (2)

Từ (1) và (2) suy ra A \(⋮\) 6 (đpcm)

8 tháng 1 2020

Ta thấy

n(n + 1)(n + 2) là ba số tự nhiên liên tiếp

Ta có nhận xét:

Tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3

Tổng của hai số tự nhiên liên tiếp luôn chia hết cho 2

=> Tích của ba số tự nhiên liên tiếp luôn chia hết cho 1.2.3 = 6

=> đpcm

8 tháng 1 2020

Với n là số nguyên

+ Ta thấy: \(n\)\(n+1\) là 2 số nguyên liên tiếp

\(\rightarrow\) Có ít nhất 1 số chia hết cho 2

\(n.\left(n+1\right)⋮2\)

+ Ta thấy: \(n,n+1\)\(n+2\) là 3 số nguyên liên tiếp

\(\rightarrow\)Có ít nhất 1 số chia hết cho 2, 1 số chia hết cho 3

\(\left(2;3\right)=1\)

\(\rightarrow n.\left(n+1\right).\left(n+2\right)⋮2.3\)

hay \(n.\left(n+1\right).\left(n+2\right)⋮6\)

+ Ta thấy:\(n\)\(n+1\) là 2 số nguyên liên tiếp

\(\rightarrow\) Có ít nhất 1 số chia hết cho 2

\(\rightarrow n.\left(n+1\right).\left(2n+1\right)⋮2\)

27 tháng 1 2018

Câu a)

Ta có: \(n\left(n+1\right)=n^2+n\)

TH1: Khi n là số chẵn 

Khi n là số chẵn thì \(n^2\)cũng là số chẵn

Suy ra \(n^2+n\)chia hết cho 2

TH2: khi n là số lẻ

Khi n là số lẻ thì \(n^2\)cũng là số lẻ

Suy ra \(n^2+n\)chia hết cho 2

Vậy .................

Cấu dưới tương tự

Làm biếng :3