Tìm x,y nguyên : \(y^2=-2.\left(x^2-x^3.y-32\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có \(VP=y\left(y+3\right)\left(y+1\right)\left(y+2\right)\)
\(VP=\left(y^2+3y\right)\left(y^2+3y+2\right)\)
\(VP=\left(y^2+3y+1\right)^2-1\)
\(VP=t^2-1\) (với \(t=y^2+3y+1\ge0\))
pt đã cho trở thành:
\(x^2=t^2-1\)
\(\Leftrightarrow t^2-x^2=1\)
\(\Leftrightarrow\left(t-x\right)\left(t+x\right)=1\)
Ta xét các TH:
\(t-x\) | 1 | -1 |
\(t+x\) | 1 | -1 |
\(t\) | 1 | -1 |
\(x\) | 0 |
0 |
Xét TH \(\left(t,x\right)=\left(1,0\right)\) thì \(y^2+3y+1=1\) \(\Leftrightarrow\left[{}\begin{matrix}y=0\\y=-3\end{matrix}\right.\) (thử lại thỏa)
Xét TH \(\left(t,x\right)=\left(-1;0\right)\) thì \(y^2+3y+1=-1\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=-2\end{matrix}\right.\) (thử lại thỏa).
Vậy các bộ số nguyên (x; y) thỏa mãn bài toán là \(\left(0;y\right)\) với \(y\in\left\{-1;-2;-3;-4\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(y^2=-2\left(x^6-x^3y-32\right)\)
\(\Leftrightarrow2x^6-2x^3y+y^2=64\)
\(\Leftrightarrow4x^6-4x^3y+2y^2=128\)
\(\Leftrightarrow\left(2x^3-y\right)^2+y^2=128\)
Áp dụng bất đẳng thức sau: \(A^2+B^2\ge\dfrac{\left(A+B\right)^2}{2}\), ta có:
\(\left(2x^3-y\right)^2+y^2\ge\dfrac{\left(2x^3-y+y\right)^2}{2}=2x^6\)
\(\Leftrightarrow128\ge2x^6\Leftrightarrow x^6\le64\)
\(\Leftrightarrow-2\le x^2\le2\)
Vậy \(x\in\left\{-2;-1;0;1;2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 2/
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)
Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)
Xét \(x^2,y^2,z^2\ge1\)
Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)
\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)
\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)
Dấu = xảy ra khi \(x^2=y^2=z^2=1\)
\(\Rightarrow\left(x,y,z\right)=?\)
Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có
\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)
\(\Leftrightarrow x^4=3\left(l\right)\)
Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)
Bài 2/
Ta có: \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)
Vậy phương trình không có nghiệm nguyên dương.
![](https://rs.olm.vn/images/avt/0.png?1311)
Biến đổi phương trình về dạng \(y\left(2y^2+\left(x^2-3x\right)y+x+3x^2\right)=0\)
Nếu y=0 thì x là số nguyên tùy ý.
Xét \(y\ne0\)thì \(2y^2+\left(x^2-3x\right)y+x+3x^2=0\)(1)
\(\Delta=\left(x^2-3x\right)^2-8\left(x+3x^2\right)=x\left(x+1\right)^2\left(x-8\right)\)
Trường hợp x=-1 thì \(\Delta=0\),nghiệm kép của (1) là y=-1
Trường hợp \(x\ne-1\)để phương trình có nghiệm nguyên thì \(\Delta\)phải là số chính phương , tức là:
\(x\left(x-8\right)=k^2\left(k\in N\right)\Leftrightarrow\left(x-4-k\right)\left(x-4+k\right)=16\)
Vì \(k\in N\)nên \(x-4-k\le x-4+k\)và \(\left(x-4-k\right)+\left(x-4+k\right)=2\left(x-4\right)\)nên x-4-k và x-4+k cùng chẵn .
Lại có : 16=2.8=4.4=(-4).(-4) =(-2).(-8) .Xảy ra 4 trường hợp
\(\hept{\begin{cases}x-4-k=a\\x-4+k=b\end{cases}với}\left(a,b\right)=\left(2;8\right),\left(4;4\right),\left(-4;-4\right),\left(-2;-8\right)\)
Giải ra ta có phương trình đã cho có các nghiệm nguyên (x,y) là (-1;-1) , (8;-10) , (0; k) với k nguyên.
P/s : lời giải trên chỉ là hướng dẫn , bạn có làm vào bài thì giải chi tiết ra nhé
![](https://rs.olm.vn/images/avt/0.png?1311)
Câu 1:
Từ PT(1) suy ra $x=7-2y$. Thay vào PT(2):
$(7-2y)^2+y^2-2(7-2y)y=1$
$\Leftrightarrow 4y^2-28y+49+y^2-14y+4y^2=1$
$\Leftrightarrow 9y^2-42y+48=0$
$\Leftrightarrow (y-2)(9y-24)=0$
$\Leftrightarrow y=2$ hoặc $y=\frac{8}{3}$
Nếu $y=2$ thì $x=7-2y=3$
Nếu $y=\frac{8}{3}$ thì $x=7-2y=\frac{5}{3}$
Câu 3: Bạn xem lại PT(2) là -x+y đúng không?
Câu 4:
$x^3-y^3=7$
$\Leftrightarrow (x-y)^3-3xy(x-y)=7$
$\Leftrightarrow 3^3-9xy=7$
$\Leftrightarrow xy=\frac{20}{9}$
Áp dụng định lý Viet đảo, với $x+(-y)=3$ và $x(-y)=\frac{-20}{9}$ thì $x,-y$ là nghiệm của pt:
$X^2-3X-\frac{20}{9}=0$
$\Rightarrow (x,-y)=(\frac{\sqrt{161}+9}{6}, \frac{-\sqrt{161}+9}{6})$ và hoán vị
$\Rightarrow (x,y)=(\frac{\sqrt{161}+9}{6}, \frac{\sqrt{161}-9}{6})$ và hoán vị.
![](https://rs.olm.vn/images/avt/0.png?1311)
\(pt=\left(x^3-4x^2+4x\right)+\left(y^3-4y^2+4y\right)+\left(8x^2+8y^2-16xy\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2+y\left(y-2\right)^2+8\left(x-y\right)^2=0\left(1\right)\)
Do \(x\left(x-2\right)^2\ge0,y\left(y-2\right)^2\ge0,8\left(x-y\right)^2\ge0\left(2\right)\)
Từ (1) và (2) =>x=y=2