Cm: (-a+b+c)/2a + (a-b+c)/2b + (a+b-c)/2 cho a,b,c >0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{b+c-a}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
Ta có: \(\dfrac{b+c-a}{2a}=\dfrac{b}{2a}+\dfrac{c}{2a}-\dfrac{a}{2a}=\dfrac{b}{2a}+\dfrac{c}{2a}-\dfrac{1}{2}\)
Viết lại BĐT cần chứng minh như sau:
\(\dfrac{b}{2a}+\dfrac{c}{2a}-\dfrac{1}{2}+\dfrac{a}{2b}-\dfrac{1}{2}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}-\dfrac{1}{2}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{b}{2a}+\dfrac{c}{2a}+\dfrac{a}{2b}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}-\dfrac{3}{2}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{b}{2a}+\dfrac{c}{2a}+\dfrac{a}{2b}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}-3\ge0\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{b}{2a}+\dfrac{a}{2b}=\dfrac{1}{2}\left(\dfrac{b}{a}+\dfrac{a}{b}\right)\ge\dfrac{1}{2}\cdot2\sqrt{\dfrac{b}{a}\cdot\dfrac{a}{b}}=2\cdot\dfrac{1}{2}=1\)
\(\dfrac{c}{2a}+\dfrac{a}{2c}=\dfrac{1}{2}\left(\dfrac{c}{a}+\dfrac{a}{c}\right)\ge\dfrac{1}{2}\cdot2\sqrt{\dfrac{c}{a}+\dfrac{a}{c}}=\dfrac{1}{2}\cdot2=1\)
\(\dfrac{b}{2c}+\dfrac{c}{2b}=\dfrac{1}{2}\left(\dfrac{b}{c}+\dfrac{c}{b}\right)\ge\dfrac{1}{2}\cdot2\sqrt{\dfrac{b}{c}\cdot\dfrac{c}{b}}=\dfrac{1}{2}\cdot2=1\)
Cộng theo vế 3 BĐT trên ta có:
\(\dfrac{b}{2a}+\dfrac{c}{2a}+\dfrac{a}{2b}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}\ge3\)
\(\Rightarrow\dfrac{b}{2a}+\dfrac{c}{2a}+\dfrac{a}{2b}+\dfrac{c}{2b}+\dfrac{a}{2c}+\dfrac{b}{2c}-3\ge3-3=0\)
BĐT đúng nên ta có ĐPCM
Không mất tính tổng quát, chuẩn hóa a + b + c = 1
Khi đó, ta cần chứng minh: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\le8\)
Xét bất đẳng thức phụ: \(\frac{\left(x+1\right)^2}{2x^2+\left(1-x\right)^2}\le4x+\frac{4}{3}\)(*)
Thật vậy: (*)\(\Leftrightarrow\frac{\left(3x-1\right)^2\left(4x+1\right)}{2x^2+\left(1-x\right)^2}\ge0\)*đúng*
Áp dụng, ta được: \(\frac{\left(a+1\right)^2}{2a^2+\left(1-a\right)^2}+\frac{\left(b+1\right)^2}{2b^2+\left(1-b\right)^2}+\frac{\left(c+1\right)^2}{2c^2+\left(1-c\right)^2}\)\(\le4\left(a+b+c\right)+4=4.1+4=8\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi a = b = c
Chuẩn hóa ta có : \(a+b+c=3\)
=> \(\frac{\left(2a+b+c\right)^2}{2a^2+\left(b+c\right)^2}=\frac{\left(a+3\right)^2}{2a^2+\left(3-a\right)^2}=\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\)
Xét\(\frac{a^2+6a+9}{3\left(a^2-2a+3\right)}\le\frac{4}{3}a+\frac{4}{3}\)
<=> \(a^2+6a+9\le4\left(a+1\right)\left(a^2-2a+3\right)\)
<=> \(4a^3-5a^2-2a+3\ge0\)
<=> \(\left(a-1\right)^2\left(4a+3\right)\ge0\)luôn đúng
Khi đó
\(VT\le\frac{4}{3}\left(a+b+c\right)+4=\frac{4}{3}.3+4=8\)(ĐPCM)
Dấu bằng xảy ra khi a=b=c
a/2b+c=b/2c+a=c/2a+b
=>2b+c/a=2c+a/b=2a+b/c ( vì a,b,c > 0 )
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
2b+c/a=2c+a/b=2a+b/c = 2b+c+2c+a+2a+b/a+b+c = 3
=> 2b+c/a+2c+a/b+2a+b/c = 3+3+3 = 9
k mk nha
\(\sqrt{a^2+2b^2}=\sqrt{a^2+b^2+b^2}\ge\sqrt{\frac{\left(a+2b\right)^2}{3}}=\frac{1}{\sqrt{3}}\left(a+2b\right)\)
Tương tự: \(\sqrt{b^2+2c^2}\ge\frac{1}{\sqrt{3}}\left(b+2c\right);\sqrt{c^2+2a^2}\ge\frac{1}{\sqrt{3}}\left(c+2a\right)\)
Cộng các bđt lại ta đc: \(\sqrt{a^2+2b^2}+\sqrt{b^2+2c^2}+\sqrt{c^2+2a^2}\ge\frac{1}{\sqrt{3}}\left(3a+3b+3c\right)=\sqrt{3}\left(a+b+c\right)\)
Dấu "=" xảy ra khi a=b=c
bạn ơi a2 là a^2 bạn nhé,mấy cái khác cũng tương tự,vì mình lười bấm nhé)
A=2a2b2+2b2c2+2a2c2−a4−b4−c4
⟺A=4a2c2−(a4+b4+c4−2a2b2+2a2c2−2b2c2)
⟺A=4a2c2−(a2−b2+c2)2
⟺A=(2ac+a2−b2+c2)(2ac−a2+b2−c2)
⟺A=((a+c)2−b2)(b2−(a−c)2)
⟺A=(a+b+c)(a+c−b)(b+a−c)(b−a+c)
Mà a, b, ca, b, c là 33 cạnh của tam giác nên:a+b+c>0;a+c−b>0;b+a−c>0;b−a+c>0⟹(a+b+c)(a+c−b)(b+a−c)(b−a+c)>0
⟹A>0 (Dpcm)
Cho mình hỏi, phân thức cuối cùng của câu a phải là \(\frac{1}{c+2a+b}\)chứ
chứng minh:\(P=\dfrac{-a+b+c}{2a}+\dfrac{a-b+c}{2b}+\dfrac{a+b-c}{2c}\ge\dfrac{3}{2}\)
\(P=\dfrac{1}{2}\left(\dfrac{b}{a}+\dfrac{c}{a}+\dfrac{a}{b}+\dfrac{c}{b}+\dfrac{a}{c}+\dfrac{b}{c}-3\right)=\dfrac{1}{2}\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\dfrac{1}{2}\left(\dfrac{b}{c}+\dfrac{c}{b}\right)+\dfrac{1}{2}\left(\dfrac{a}{c}+\dfrac{c}{a}\right)-\dfrac{3}{2}\)Áp dụng BĐT cauchy:
\(\dfrac{a}{b}+\dfrac{b}{a}\ge2\sqrt{\dfrac{a}{b}.\dfrac{b}{a}}=2\)
tương tự với các phân thức còn lại ta có đpcm.
dấu = xảy ra khi a=b=c