Chứng minh \(5^n-1\)chia hết cho 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Hoàng Việt Bách yêu cầu bn làm 1 câu hỏi khác theo yêu cầu mk ns trog phần tin nhắn nha !!! ! check tin nhắn bn ey !
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta đặt:
\(A=1^n+2^n+3^n+4^n\)
Nếu n là số lẻ thì \(1^n+4^n⋮5;2^n+3^n⋮5\)
Nên \(A⋮5\)
Nếu n = 4K + 2 \(\left(k\in N\right)\) thì
\(A=1+2^{4K+2}+3^{4K+2}+4^{4K+2}=\left(1+4^{2K+1}\right)+\left(9^{2K+1}+16^{2K+1}\right)⋮5\)
Nếu n = 4K \(\left(K\in N\right)\) thì
\(A=1+2^{4K}+3^{4K}+4^{4K}=1+16^K+81^K+256^K\)
Có chữ số tận cùng là 4, không chia hết cho 5
\(\Rightarrow1^n+2^n+3^n+4^n⋮5\) khi \(n⋮̸4\left(đpcm\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4