K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2015

=3/12+3/60+3/140

=>1/4+1/20+3/140

=>4+20+3/140

=>3363/140

14 tháng 3 2024

   \(\dfrac{3}{2.6}\) + \(\dfrac{3}{6.10}\) + \(\dfrac{3}{10.14}\)

=  \(\dfrac{3}{4}\).(\(\dfrac{4}{2.6}\) + \(\dfrac{4}{6.10}\) + \(\dfrac{4}{10.14}\))

\(\dfrac{3}{4}\).(\(\dfrac{1}{2}-\dfrac{1}{6}\) + \(\dfrac{1}{6}\) - \(\dfrac{1}{10}\) + \(\dfrac{1}{10}\) - \(\dfrac{1}{14}\))

\(\dfrac{3}{4}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{14}\))

\(\dfrac{3}{4}\)\(\dfrac{3}{7}\)

\(\dfrac{9}{28}\)

14 tháng 3 2024

B = \(\dfrac{4}{1.3.5}\) + \(\dfrac{4}{3.5.7}\) + \(\dfrac{4}{5.7.9}\)

B = \(\dfrac{1}{1.3}\) - \(\dfrac{1}{3.5}\) + \(\dfrac{1}{3.5}\) - \(\dfrac{1}{5.7}\) + \(\dfrac{1}{5.7}\) - \(\dfrac{1}{7.9}\)

B = \(\dfrac{1}{1.3}\) - \(\dfrac{1}{7.9}\)

B = \(\dfrac{1}{3}\) - \(\dfrac{1}{63}\)

B =  \(\dfrac{20}{63}\)

Sửa đề: \(D=\dfrac{3}{2\cdot6}+\dfrac{3}{6\cdot10}+\dfrac{3}{10\cdot14}+...+\dfrac{3}{26\cdot30}\)

Ta có: \(D=\dfrac{3}{2\cdot6}+\dfrac{3}{6\cdot10}+\dfrac{3}{10\cdot14}+...+\dfrac{3}{26\cdot30}\)

\(=\dfrac{3}{4}\left(\dfrac{4}{2\cdot6}+\dfrac{4}{6\cdot10}+\dfrac{4}{10\cdot14}+...+\dfrac{4}{26\cdot30}\right)\)

\(=\dfrac{3}{4}\left(\dfrac{1}{2}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{14}+...+\dfrac{1}{26}-\dfrac{1}{30}\right)\)

\(=\dfrac{3}{4}\left(\dfrac{1}{2}-\dfrac{1}{30}\right)\)

\(=\dfrac{3}{4}\cdot\dfrac{28}{60}\)

\(=\dfrac{21}{60}=\dfrac{7}{20}\)

4 tháng 8 2020

\(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2015.2018}\)

\(=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2015}-\frac{1}{2018}\)

\(=\frac{1}{2}-\frac{1}{2018}=\frac{504}{1009}\)

Vậy \(A=\frac{504}{1009}.\)

\(B=\frac{4}{2.6}+\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{102.106}\)

\(=\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{102}-\frac{1}{106}\)

\(=\frac{1}{2}-\frac{1}{106}=\frac{26}{53}\)

Vậy \(B=\frac{26}{53}.\)

4 tháng 8 2020

Bài làm:

a) \(A=\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2015.2018}\)

\(A=\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2015}-\frac{1}{2018}\)

\(A=\frac{1}{2}-\frac{1}{2018}\)

\(A=\frac{504}{1009}\)

b) \(B=\frac{4}{2.6}+\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{102.106}\)

\(B=\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+...+\frac{1}{102}-\frac{1}{106}\)

\(B=\frac{1}{2}-\frac{1}{106}\)

\(B=\frac{26}{53}\)

16 tháng 3 2016

\(A=\frac{1}{6.10}+\frac{1}{10.14}+\frac{1}{14.18}+...+\frac{1}{402.406}\)

4\(A=\frac{1}{6}-\frac{1}{10}+\frac{1}{10}-\frac{1}{14}+\frac{1}{14}-\frac{1}{18}+...+\frac{1}{402}-\frac{1}{406}\)

4\(A=\frac{1}{6}-\frac{1}{406}\)

4\(A=\frac{100}{609}\)

\(\Rightarrow A=\frac{100}{609}:4\)\(=\frac{25}{609}\)

16 tháng 3 2016

=1/6-1/10+1/10-1/14+1/14-1/18+...........+1/402-1/406

=1/6-1/406

11 tháng 9 2023

12.T=2.6.12+6.10.12+10.14.12+...+102.106.12=

=2.6.(10+2)+6.10.(14-2)+10.14.(18-6)+...+102.106.(110-98)=

=2.2.6+2.6.10-2.6.10+6.10.14-6.10.14+10.14.18-...-98.102.106+102.106.110=

=2.2.6+102.106.110

\(\Rightarrow T=\dfrac{2.2.6+102.106.110}{12}=99112\)

 

16 tháng 10 2024

bạn j ơi cho mình hỏi là 102 lấy ở đâu ja <3

17 tháng 6 2019

Đặt A = 1/2.6 + 1/6.10 + 1/10.14 + ..... + 1/102.106

=> 4A = 4/2.6 + 4/6.10 + 4/10.14 + ..... + 4/102.106

=> 4A = 1/2 - 1/6 + 1/6 - 1/10 + 1/10 - 1/14 + ... + 1/102 - 1/106

=> 4A = 1/2 - 1/106

=> 4A = 26/53

=> A = 13/106

~Study well~

#QASJ

17 tháng 6 2019

\(\frac{1}{2.6}+\frac{1}{6.10}+...+\frac{1}{102.106}\)

\(=\frac{1}{4}.\left(\frac{4}{2.6}+\frac{4}{6.10}+...+\frac{4}{102.106}\right)\)

\(=\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{6}+\frac{1}{6}-\frac{1}{10}+...+\frac{1}{102}-\frac{1}{106}\right)\)

\(=\frac{1}{4}.\left(\frac{1}{2}-\frac{1}{106}\right)\)

\(=\frac{1}{4}.\frac{26}{53}\)

\(=\frac{13}{106}\)

24 tháng 2 2018

nhân 4 vào tử

24 tháng 2 2018

\(\frac{1}{6.10}\)\(\frac{1}{10.14}\)+ ... + \(\frac{1}{402.406}\)

\(\frac{1}{4}\)\(\left(\frac{4}{6.10}+\frac{4}{10.14}+...+\frac{4}{402.406}\right)\)

\(\frac{1}{4}\). ( \(\frac{10-6}{6.10}\)\(\frac{14-10}{10.14}\)+ ... + \(\frac{406-402}{402.406}\))

\(\frac{1}{4}\). ( \(\frac{10}{6.10}\)\(\frac{6}{6.10}\)+ ... + \(\frac{406}{402.406}\)\(\frac{402}{402.406}\))

\(\frac{1}{4}\). ( \(\frac{1}{6}\)\(\frac{1}{406}\))

\(\frac{1}{4}\)\(\frac{100}{609}\)

\(\frac{25}{609}\)