K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 3 2017

Cho f(x)=x3+ax+b

+) f(x) chia x+1 dư 7

=> f(-1)=-1-a+b=7 => b-a=8 (1)

+) f(x) chia x-3 dư -5

=> f(3)=27+3a+b=-5 => 3a+b=-32 (2)

Từ (1) suy ra a=b-8

Thay vào (2) ta có:

3a+b=-32

=> 3(b-8)+b=-32

<=> 3b-24+b=-32

<=> 4b=-8

<=> b= -2

=> a=b-8= -2-8=-10

Vậy a=-10; b=-2

13 tháng 6 2017

đặt f(x) = x3 + ax + b.

f(x) chia cho x + 1 dư 7 nên f(-1) = 7 hay -a + b - 1 = 7.

f(x) chia x - 3 dư -5 nên f(3) = -5 hay 3a + b + 27 = -5.

giải hệ trên tìm được a và b.
 

AH
Akai Haruma
Giáo viên
3 tháng 1 2017

Đặt $f(x)=x^3+ax+b$. Theo định lý Bezout về dư trong đa thức thì số dư của $f(x)$ cho $x-a$ chính là $f(a)$. Do đó:

\(\left\{\begin{matrix} f(-1)=-1-a+b=7\\ f(3)=27+3a+b=5\end{matrix}\right.\Rightarrow \left\{\begin{matrix} a=\frac{-15}{2}\\ b=\frac{1}{2}\end{matrix}\right.\)

\(a,b\not\in \mathbb{Z}\Rightarrow \) bài toán đúng với TH $x$ chẵn.

5 tháng 11 2018

Đặt f(x)=x3+ax+bf(x)=x3+ax+b. Theo định lý Bezout về dư trong đa thức thì số dư của f(x)f(x) cho x−ax−achính là f(a)f(a). Do đó:

{f(−1)=−1−a+b=7f(3)=27+3a+b=5⇒{a=−152b=12{f(−1)=−1−a+b=7f(3)=27+3a+b=5⇒{a=−152b=12

tick đúng
11 tháng 2 2018

Gọi thương của phép chia  \(x^3+ax+b\)   cho  \(x+1\)là   \(A\left(x\right)\);   cho  \(x-2\)là     \(B\left(x\right)\)

Ta có:    \(f\left(x\right)=x^3+ax+b=\left(x+1\right).A\left(x\right)+7\)

             \(f\left(x\right)=x^3+ax+b=\left(x-2\right).B\left(x\right)+4\)

Theo định lý  Bơ-du ta có:

          \(f\left(-1\right)=-1-a+b=7\)

        \(f\left(2\right)=8+2a+b=4\)

suy ra:   \(a=-4;\)   \(b=4\)

Vậy...