tìm số nguyên x, y
(2x+1)(2x+2)(2x+3)(2x+4)-5y=11879
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(2x + 1) . (2x + 2) . (2x + 3) . (2x + 4) - 5y = 11879
[(2x + 1). (2x + 4)].[(2x + 2) . (2x + 3)] -5y = 11879
(4x2+10x+4).(4x2+10x+6) -5y = 11879
Đặt t= 4x2+10x+4
t(t+2) -5y = 11879
t2+2t-5y = 11879
(t+1)2 = 11880+5y
(4x2+10x+5)2 = 5(2376+y)
=> x = 0; y=-2371
ai k mình k lại [ chỉ 3 người đầu tiên mà trên 10 điểm hỏi đáp ]
a) 5( 2y + 3 )( y + 2 ) - 2( 5y - 4 )( y - 1 ) = 75
<=> 5( 2y2 + 7y + 6 ) - 2( 5y2 - 9y + 4 ) = 75
<=> 10y2 + 35y + 30 - 10y2 + 18y - 8 = 75
<=> 53y + 22 = 75
<=> 53y = 53
<=> y = 1
b) ( 2x + 3 )2 + ( 2 - 2x )2 + ( 4x + 6 )( 2 - 2x ) = x + 1
<=> 4x2 + 12x + 9 + 4x2 - 8x + 4 - 8x2 - 4x + 12 = x + 1
<=> 25 = x + 1
<=> x = 24
thi cấp tỉnh mà với có 1 số bài thi vào chuyên đại học với cấp 3 nữa
Bài 2: Ta có:
\(\left(2x+5y+1\right)\left(2020^{\left|x\right|}+y+x^2+x\right)=105\) là số lẻ
\(\Rightarrow\left\{{}\begin{matrix}2x+5y+1\\2020^{\left|x\right|}+y+x^2+x\end{matrix}\right.\) đều lẻ
\(\Rightarrow y⋮2\)\(\Rightarrow2020^{\left|x\right|}⋮̸2\Leftrightarrow\left|x\right|=0\Leftrightarrow x=0\).
Thay vào tìm được y...
a. \(y=\frac{2}{2x+3}\in Z\)
\(\Rightarrow2x+3\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow2x\in\left\{-5;-4;-2;-1\right\}\). Vì x thuộc Z
\(\Rightarrow x\in\left\{-2;-1\right\}\)
b. \(y=\frac{2x-1}{2x-3}=\frac{2x-3+2}{2x-3}=1+\frac{2}{2x-3}\)
Vì y thuộc Z nên 2 / 2x - 3 thuộc Z
\(\Rightarrow2x-3\in\left\{-2;-1;1;2\right\}\)
\(\Rightarrow2x\in\left\{1;2;4;5\right\}\). Vì x thuộc Z
\(\Rightarrow x\in\left\{1;2\right\}\)
c. \(y=\frac{2x^2-1}{2x-3}=\frac{x\left(2x-3\right)+2x-3-x+2}{2x-3}=x+1-\frac{x+2}{2x-3}\)
Vì y thuộc Z nên x thuộc Z ; x + 2 / 2x - 3 thuộc Z
=> 2x + 4 / 2x - 3 thuộc Z
=> 2x - 3 + 7 / 2x - 3 thuộc Z
=> 7 / 2x - 3 thuộc Z
\(\Rightarrow2x-3\in\left\{-7;-1;1;7\right\}\)
\(\Rightarrow2x\in\left\{-4;2;4;10\right\}\)
\(\Rightarrow x\in\left\{-2;1;2;5\right\}\) ( tm x thuộc Z )
d,e tương tự
a) (x - 2)(x + 1) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy...
e) xy - 5x - 5y = 0
=> x(y - 5) - 5y = 0
=> x(y - 5) - 5(y - 5) - 25 = 0
=>(x - 5)(y - 5) = 25 = 1 . 25 = (-1) . (-25) = 5 . 5 = (-5). (-5) (và ngược lại)
Lập bảng :
x - 5 | 1 | 25 | -1 | -25 | 5 | -5 |
y - 5 | 25 | 1 | -25 | -1 | 5 | -5 |
x | 6 | 30 | 4 | -20 | 10 | 0 |
y | 30 | 6 | -20 | 4 | 10 | 0 |
Vậy ...
a)
\(\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{3x-2y}{3.5-2.2}=\dfrac{-55}{11}=-5\)
=> \(\left\{{}\begin{matrix}x=-5.5=-25\\y=-5.2=-10\end{matrix}\right.\)
b)
\(\dfrac{x}{3}=\dfrac{y}{2}=\dfrac{2x+5y}{2.3+5.2}=\dfrac{48}{16}=3\)
=> \(\left\{{}\begin{matrix}x=3.3=9\\y=3.2=6\end{matrix}\right.\)
c)
Có: \(\dfrac{x}{y}=-\dfrac{5}{2}\Leftrightarrow-\dfrac{x}{5}=\dfrac{y}{2}=\dfrac{x+y}{-5+2}=\dfrac{30}{-3}=-10\)
=> \(\left\{{}\begin{matrix}x=-10.-5=50\\y=-10.2=-20\end{matrix}\right.\)
d)
Có: \(\dfrac{x}{y}=\dfrac{4}{3}\Leftrightarrow\dfrac{x}{4}=\dfrac{y}{3}=\dfrac{2x+3y}{2.4+3.3}=\dfrac{34}{17}=2\)
=> \(\left\{{}\begin{matrix}x=2.4=8\\y=2.3=6\end{matrix}\right.\)
a: (x-2)(y-3)=5
=>\(\left(x-2\right)\cdot\left(y-3\right)=1\cdot5=5\cdot1=\left(-1\right)\cdot\left(-5\right)=\left(-5\right)\cdot\left(-1\right)\)
=>\(\left(x-2;y-3\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(3;8\right);\left(7;4\right);\left(1;-2\right);\left(-3;2\right)\right\}\)
b: (2x-1)*(y-4)=-11
=>\(\left(2x-1\right)\cdot\left(y-4\right)=1\cdot\left(-11\right)=\left(-11\right)\cdot1=\left(-1\right)\cdot11=11\cdot\left(-1\right)\)
=>\(\left(2x-1;y-4\right)\in\left\{\left(1;-11\right);\left(-11;1\right);\left(-1;11\right);\left(11;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(1;-7\right);\left(-5;5\right);\left(0;15\right);\left(6;3\right)\right\}\)
c: xy-2x+y=3
=>\(x\left(y-2\right)+y-2=1\)
=>\(\left(x+1\right)\left(y-2\right)=1\)
=>\(\left(x+1\right)\cdot\left(y-2\right)=1\cdot1=\left(-1\right)\cdot\left(-1\right)\)
=>\(\left(x+1;y-2\right)\in\left\{\left(1;1\right);\left(-1;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;3\right);\left(-2;1\right)\right\}\)
Đặt \(A=\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)\)
Ta có: \(2^x\cdot A\) là tích của \(5\) số tự nhiên liên tiếp nên \(2^x\cdot A⋮5\)
Nhưng \(2^x⋮̸5\), do đó \(A⋮5\)
Nếu \(y\ge1\), ta có \(\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-5^y⋮5\)
Mà \(11879⋮̸5\Rightarrow y\ge1\) không thỏa mãn suy ra \(y=0\)
Khi đó \(pt\Leftrightarrow\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)-1=11879\)
\(\Leftrightarrow\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=11880\)
\(\Leftrightarrow\left(2^x+1\right)\left(2^x+2\right)\left(2^x+3\right)\left(2^x+4\right)=9\cdot10\cdot11\cdot12\Leftrightarrow x=3\)
Vậy \(\left\{{}\begin{matrix}x=3\\y=0\end{matrix}\right.\) là 2 số tự nhiên cần tìm
lộn: x, y là số tự nhiên