Giá trị x>0 thõa mãn pt \(1+\dfrac{1}{x+2}=\dfrac{12}{x^3+8}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề: \(x+\dfrac{1}{x}=a\)
\(A=x^3+\dfrac{1}{x^3}=\left(x+\dfrac{1}{x}\right)^3-3\left(x+\dfrac{1}{x}\right)=a^3-3a\\ B=x^6+\dfrac{1}{x^6}=\left(x^3+\dfrac{1}{x^3}\right)^2-2=\left(a^3-3a\right)^2-2=a^6-6a^4+9a^2-2\\ C=x^7+\dfrac{1}{x^7}=\left(x^3+\dfrac{1}{x^3}\right)\left(x^4+\dfrac{1}{x^4}\right)-\left(x+\dfrac{1}{x}\right)\)
Mà \(x^4+\dfrac{1}{x^4}=\left(x^2+\dfrac{1}{x^2}\right)^2-2=\left[\left(x+\dfrac{1}{x}\right)^2-2\right]^2-2=\left(a^2-2\right)^2-2=a^4-4a^2+2\)
\(\Leftrightarrow C=\left(a^3-3a\right)\left(a^4-4a^2+2\right)-a=...\)
\(1+\dfrac{1}{x+2}=\dfrac{12}{x^3+8}\Leftrightarrow\dfrac{\left(x^3+8\right)\left(x+2\right)}{\left(x^3+8\right)\left(x+2\right)}+\dfrac{\left(x^3+8\right)}{\left(x^3+8\right)\left(x+2\right)}=\dfrac{12\left(x+2\right)}{\left(x^3+8\right)\left(x+2\right)}\)
\(\Rightarrow x^4+2x^3+8x+16+x^3+8=12x+24\)
\(\Leftrightarrow x^4+3x^3-4x=0\\ \Leftrightarrow x\left(x^3+3x^2-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\left(loại\right)\\x^3+3x^2-4=0\end{matrix}\right.\)
\(x^3+3x^2-4=0\Leftrightarrow\left(x^3+4x^2+4x\right)-\left(x^2+4x+4 \right)=0\)
\(\left(x-1\right)\left(x^2+4x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x^2+4x+4=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\\left(x+2\right)^2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-2\left(loại\right)\end{matrix}\right.\)
vậy phương trình có tập nghiệm là S={1}
a) \(x^2-5x+4=0\)
\(\Leftrightarrow\)\(x^2-x-4x+4=0\)
\(\Leftrightarrow\)\(x\left(x-1\right)-4\left(x-1\right)=0\)
\(\Leftrightarrow\)\(\left(x-1\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-1=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=1\\x=4\end{cases}}\)
Vậy tổng các giá trị nguyên của x thỏa mãn là:
\(1+4=5\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-4\right)\\x_1x_2=-m^2+4\end{matrix}\right.\)
\(\dfrac{x_1+x_2}{x_1x_2}+\dfrac{4}{x_1x_2}=1\)
Thay vào ta được : \(\dfrac{2\left(m-4\right)+4}{-m^2+4}=1\Leftrightarrow\dfrac{2m-4}{\left(2-m\right)\left(m+2\right)}=1\Leftrightarrow\dfrac{-2}{m+2}=1\Rightarrow-2=m+2\Leftrightarrow m=-4\)
Δ=(2m-2)^2-4(m-3)
=4m^2-8m+4-4m+12
=4m^2-12m+16
=4m^2-12m+9+7=(2m-3)^2+7>=7>0 với mọi m
=>Phương trình luôn có hai nghiệm phân biệt
\(\left(\dfrac{1}{x1}-\dfrac{1}{x2}\right)^2=\dfrac{\sqrt{11}}{2}\)
=>\(\dfrac{1}{x_1^2}+\dfrac{1}{x_2^2}-\dfrac{2}{x_1x_2}=\dfrac{\sqrt{11}}{2}\)
=>\(\dfrac{\left(\left(x_1+x_2\right)^2-2x_1x_2\right)}{\left(x_1\cdot x_2\right)^2}-\dfrac{2}{x_1\cdot x_2}=\dfrac{\sqrt{11}}{2}\)
=>\(\dfrac{\left(2m-2\right)^2-2\left(m-3\right)}{\left(-m+3\right)^2}-\dfrac{2}{-m+3}=\dfrac{\sqrt{11}}{2}\)
=>\(\dfrac{4m^2-8m+4-2m+6}{\left(m-3\right)^2}+\dfrac{2}{m-3}=\dfrac{\sqrt{11}}{2}\)
=>\(\dfrac{4m^2-10m+10+2m-6}{\left(m-3\right)^2}=\dfrac{\sqrt{11}}{2}\)
=>\(\sqrt{11}\left(m-3\right)^2=2\left(4m^2-8m+4\right)\)
=>\(\sqrt{11}\left(m-3\right)^2=2\left(2m-2\right)^2\)
=>\(\Leftrightarrow\left(\dfrac{m-3}{2m-2}\right)^2=\dfrac{2}{\sqrt{11}}\)
=>\(\left[{}\begin{matrix}\dfrac{m-3}{2m-2}=\sqrt{\dfrac{2}{\sqrt{11}}}\\\dfrac{m-3}{2m-2}=-\sqrt{\dfrac{2}{\sqrt{11}}}\end{matrix}\right.\)
mà m nguyên
nên \(m\in\varnothing\)
\(ac=-3< 0\Rightarrow\) pt đã cho luôn có 2 nghiệm pb trái dấu với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3\end{matrix}\right.\)
\(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\Leftrightarrow\dfrac{x_1^3+x_2^3}{\left(x_1x_2\right)^2}=m-1\)
\(\Leftrightarrow\dfrac{\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)}{9}=m-1\)
\(\Leftrightarrow8\left(m-1\right)^3+18\left(m-1\right)=9\left(m-1\right)\)
\(\Leftrightarrow\left(m-1\right)\left[8\left(m-1\right)^2+9\right]=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=1\\8\left(m-1\right)^2+9=0\left(vô-nghiệm\right)\end{matrix}\right.\)
với x>0 thì pt luôn xác định.
\(\Rightarrow\dfrac{x^3+8}{x^3+8}+\dfrac{x^2-2x+4}{x^3+8}=\dfrac{12}{x^3+8}\)
\(\Leftrightarrow x^3+8+x^2-2x+4=12\)
\(\Leftrightarrow x^3+x^2-2x=0\)
\(x\left(x^2+x-2\right)=0\Rightarrow x=0\) hoặc \(x^2+x-2=0\)
x=0 hoac (x\(^2\)-1) +(x-1) =0
x=0 hoặc (x-1)(x+2)=0
x=0 hoax x=1 hoặc x=2 vỉ x>0 nên pt có 2 nghiệm là x=1 , x=2.
x = 0