K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2017

Hình như đề bị sai hay sao đó bạn

Trên giả thiết không có điểm M, làm sao mà có tam giác MAC; MAB được!

12 tháng 3 2017

A!Sorry các bạn.AI cắt BC ở M nha!leuleu

a: Xét ΔAMB và ΔAMC có

AB=AC

\(\widehat{BAM}=\widehat{CAM}\)

AM chung

Do đó:ΔAMB=ΔAMC

b: Xét ΔAEM vuông tại E và ΔAFM vuông tại F có

AM chung

\(\widehat{EAM}=\widehat{FAM}\)

Do đó:ΔAEM=ΔAFM

Suy ra:ME=MF

hay ΔMEF cân tại M

c: Ta có: AE=AF

ME=MF

Do đó: AM là đường trung trực của FE

hay AM⊥FE

8 tháng 3 2022

a, Xét tam giác AMB và tam giác AMC có 

AM _ chung 

AB = AC

^MAB = ^MAC 

Vậy tam giác AMB = tam giác AMC (c.g.c) 

b, Xét tam giác AEM và tam giác AFM có 

AM _ chung 

^MAE = ^MAF 

Vậy tam giác AEM = tam giác AFM (ch-gn) 

=> AE = AF ( 2 cạnh tương ứng ) 

=> EM = FM ( 2 cạnh tương ứng ) 

Xét tam giác MEF có EM = FM 

Vậy tam giác MEF cân tại M

c, AE/AB = AF/AC => EF // BC 

mà tam giác ABC cân tại A có AM là phân giác 

đồng thời là đường cao 

=> AM vuông BC 

=> AM vuông EF 

8 tháng 3 2022

bạn vẽ hình cho mình xem với 

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
17 tháng 12 2023

a: Xét ΔAED vuông tại E và ΔAFD vuông tại F có

AD chung

\(\widehat{EAD}=\widehat{FAD}\)

Do đó: ΔAED=ΔAFD

b: Xét ΔABC có

AD là đường trung tuyến 

AD là đường phân giác

Do đó: ΔABC cân tại A

a) Ta có: \(\widehat{ABC}+\widehat{MBC}=\widehat{ABM}\)(tia BC nằm giữa hai tia BA,BM)

nên \(\widehat{ABC}+\widehat{MBC}=90^0\)(1)

Ta có: \(\widehat{ACB}+\widehat{MCB}=\widehat{ACM}\)(tia CB nằm giữa hai tia CA,CM)

nên \(\widehat{ACB}+\widehat{MCB}=90^0\)(2)

Ta có: ΔABC cân tại A(gt)

nên \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)(3)

Từ (1), (2) và (3) suy ra \(\widehat{MBC}=\widehat{MCB}\)

Xét ΔMBC có \(\widehat{MBC}=\widehat{MCB}\)(cmt)

nên ΔMBC cân tại M(Định lí đảo của tam giác cân)

b) Xét ΔABM vuông tại B và ΔACM vuông tại C có 

AB=AC(ΔABC cân tại A)

BM=CM(ΔMBC cân tại M)

Do đó: ΔABM=ΔACM(hai cạnh góc vuông)

\(\widehat{BAM}=\widehat{CAM}\)(hai góc tương ứng)

mà tia AM nằm giữa hai tia AB,AC

nên AM là tia phân giác của \(\widehat{BAC}\)(đpcm)

Ta có: ΔABM=ΔACM(cmt)

nên \(\widehat{BMA}=\widehat{CMA}\)(hai góc tương ứng)

mà tia MA nằm giữa hai tia MB,MC

nên MA là tia phân giác của \(\widehat{BMC}\)(đpcm)

c) Ta có: AB=AC(ΔABC cân tại A)

nên A nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(4)

Ta có: MB=MC(ΔMBC cân tại M)

nên M nằm trên đường trung trực của BC(Tính chất đường trung trực của một đoạn thẳng)(5)

Từ (4) và (5) suy ra AM là đường trung trực của BC

hay AM⊥BC(đpcm)

17 tháng 5 2019

Mình làm câu a thôi nhé

a) Xét tam giác AKD vuông tại K và tam giác AKJ vuông tại K, ta có:

KD=KJ (vì AC là đường trung trực của DJ)

AK: chung

Do đó: tam giác AKD=tam giác AKJ (2 cgv)

suy ra: AD=AJ (2 cạnh t/ư) (1)

Xét tam giác ALI vuông tại L và tam giác ALD vuông tại L, ta có:

LI=LD (vì AB là đường trung trực của ID)

AB: chung

Do đó: tam giác ALI=tam giác ALD (2 cgv)

suy ra: AI=AD (2 cạnh t/ư) (2)

Từ (1) và (2)

suy ra: AI=AJ

suy ra: tam giác AIJ cân tại A

17 tháng 5 2019

rnteLp0.png

Câu hỏi của ❤KimCương❤ - Toán lớp 7 - Học toán với OnlineMath.CÂU D dùng phép tương tự để CM.

9 tháng 8 2018

Đề có vấn đề rồi p/g HAC ko cắt AC 

26 tháng 2 2021

Giải:

a)Vì tam giác ABC cân tại A=> <ABC=<ACB và AB=AC (dấu "<" trước tên góc là kí hiệu của góc nha)

Xét tam giác AMB và tam giác AMC có:

+<MAC=<MAB(AM là phân giác của <BAC)

+AB=AC(cmt)

+AM chung

=>tam giác AMB=tam giác AMC(g.c.g)

b)Xét tam giác AEM và tam giác AFM có:

+AM chung

+<MAE=<MAP(AM là phân giác của <BAC)

+<AEM=<APM=90°(gt)

=>tam giác AEM=tam giác AFM (ch-gn)

=>AE=AF(2 cạnh tương ứng)

=>tam giác AFE là tam giác cân.

26 tháng 2 2021

A B C M E F

a,Xét ∆AMB và ∆AMC có :

AB = AC (giả thiết)

∠BAM = ∠CAM (giả thiết)

AM chung

=> ∆AMB = ∆AMC (c.g.c)

b, Xét 2 tam giác vuông AME và AMF có :

AM chung

∠EAM = ∠FAM (giả thiết)

=> ∆AME = ∆AMF (cạnh huyền - góc nhọn)

=> AE = AF (cặp cạnh tương ứng)

=> ∆AFE cân tại A

Sửa đề: ΔABC vuông tại B

a: Ta có: ΔBAC vuông tại B

=>\(BA^2+BC^2=AC^2\)

=>\(BC^2=5^2-3^2=16\)

=>\(BC=\sqrt{16}=4\left(cm\right)\)

b: Sửa đề: ΔADE vuông tại E

Xét ΔBAD và ΔEAD có

AB=AE
\(\widehat{BAD}=\widehat{EAD}\)

AD chung

Do đó: ΔBAD=ΔEAD

=>\(\widehat{ABD}=\widehat{AED}\)

mà \(\widehat{ABD}=90^0\)

nên \(\widehat{AED}=90^0\)

=>ΔAED vuông tại E

c: Sửa đề: Kẻ BH vuông góc AC

Xét ΔABE có AB=AE

nên ΔABE cân tại A

Ta có: \(\widehat{CBE}+\widehat{ABE}=\widehat{ABC}=90^0\)

\(\widehat{HBE}+\widehat{AEB}=90^0\)(ΔHEB vuông tại H)

mà \(\widehat{ABE}=\widehat{AEB}\)(ΔABE cân tại A)

nên \(\widehat{CBE}=\widehat{HBE}\)

=>BE là phân giác của góc HBC

d:

Ta có: \(\widehat{BOD}=\widehat{AOH}\)(hai góc đối đỉnh)

\(\widehat{AOH}+\widehat{DAC}=90^0\)(ΔHAO vuông tại H)

Do đó: \(\widehat{BOD}+\widehat{DAC}=90^0\)

Ta có: \(\widehat{BDO}+\widehat{BAD}=90^0\)(ΔBAD vuông tại A)

\(\widehat{BOD}+\widehat{DAC}=90^0\)

mà \(\widehat{BAD}=\widehat{DAC}\)

nên \(\widehat{BDO}=\widehat{BOD}\)

=>ΔBDO cân tại B

8 tháng 3 2023

`a)`

Xét `Delta ABM` và `Delta ACM` có :

`{:(AB=AC(GT)),(AM-chung),(BM=CM(M là tđ BC)):}}`

`=>Delta ABM=Delta ACM(c.c.c)(đpcm)`

`b)`

`Delta ABM=Delta ACM(cmt)=>hat(A_1)=hat(A_2)`

mà `AM` nằm giữa `AB` và `AC`

nên `AM` là p/g của `hat(BAC)(đpcm)`

`c)`

Xét `Delta ADM` và `Delta AEM` có :

`{:(hat(ADM)=hat(AEM)(=90^)),(AM-chung),(hat(A_1)=hat(A_2)(cmt)):}}`

`=>Delta ADM=Delta AEM(ch-gn)`

`=>AD=AE` ( 2 cạnh t/ứng )

`=>Delta ADE` cân tại `A(đpcm)`