Cho tam giác ABC, D nằm trong tam giác ABC. Chứng minh nếu AD=AB thì AB<AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADE có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó:ΔADB=ΔADE
b: Ta có: ΔADB=ΔADE
nên AB=AE và BD=ED
=>AD là đường trung trực của BE
c: Xét ΔDBF và ΔDEC có
\(\widehat{DBF}=\widehat{DEC}\)
DB=DE
\(\widehat{BDF}=\widehat{EDC}\)
Do đo: ΔDBF=ΔDEC
d: XétΔABC có AD là phân giác
nên BD/AB=CD/AC
mà AB<AC
nên BD<CD