K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2019

Chọn B

Xét g(x) =  x 4 - 4 x 3 + 4 x 2 + a  với x  ∈ [0;2]

Bảng biến thiên g(x)

Trường hợp 1: a  ≥ 0.  Khi đó M = a + 1; m = a

Ta có 2m  Với 

Trường hợp 2:  Khi đó M = -a; m = -(a+1)

Trường hợp 3: -1 < a < 0. Với 

Vậy có 5 giá trị a cần tìm.

5 tháng 11 2019

Chọn D

3 tháng 11 2018

Đáp án A

Xét g x = x 4 − 4 x 3 + 4 x 2 + a  

g ' x = 4 x 3 − 12 x 2 + 8 x = 0 ⇔ x = 0 ,   1 ,   2

5 tháng 6 2019

+ Xét hàm số y= x4- 4x3+ 4x2+ a  trên đoạn [ 0; 2].

Ta có đạo hàm y’ = 4x3-12x2+ 8x,   y ' = 0

Khi đó;  y( 0) = y( 2) = a; y( 1) = a+ 1

+ Nếu a≥ 0  thì  M= a+ 1,m = a.

 Để M ≤ 2m khi a≥ 1, suy ra a ∈ 1 ; 2 ; 3  thỏa mãn

+ Nếu a≤ - 1 thì  M = a = - a ,   m = a + 1 = - a - 1 .

 Để  M≤ 2m thì a≤ -2,  suy ra a a ∈ - 2 ; - 3   

Vậy có 5 giá trị nguyên của a thỏa mãn yêu cầu.

Chọn B.

 

1 tháng 10 2018

Chọn D

Xét hàm số f(x) = x 4 - 4 x 3 + 4 x 2 + a  trên đoạn [0;2], ta có:

trên đoạn

Vì 

nên trên đoạn [0;2] giá trị lớn nhất và giá trị nhỏ nhất của hàm số  lần lượt là a+1, a

Suy ra  nếu  nếu 

 

Khi đó 

nên chọn 

Khi đó  nên chọn 

Vậy có 4 giá trị a thỏa yêu cầu

11 tháng 12 2017

Đáp án D

Xét hàm số utLXtnAHAXZg.png.

WVXeUZNSMTh6.png;

3Sq4PZtpXS6W.pngaJxVp1I4jPOj.png

pdAOjpZtd3mu.png

Bảng biến thiên

KsJ8gONRGnYh.png

Do u7LIT07hrkst.png nên 3s5KLaEXd64W.png suy ra FtKIVcspW3Mr.png.

Suy ra jEoo7242PpDN.png.

Nếu VXLD4502NCDy.png thì 9TAGuySWhRVj.png, SNqHqtX6l55p.png

hUnCorl2lwHR.png3MBkHnwPFHwQ.png9iZ9VMgxf0gq.png.

Nếu G522RBPBNWuD.png thì Wfh9fXnx1v2l.png, VhHGWoXclYji.png

bvOGxUgRW9pV.png4MMjwUo8ealS.pnglE7ed3Pn109h.png.

Do đó tqJseeuLC8G9.png hoặc nlXOAhsXYCz8.png, do a nguyên và thuộc đoạn JHMlrDo85yhC.png nên ufkMbtKePCGT.png.

10 tháng 11 2017

Đáp án D

17 tháng 2 2017

Chọn D

29 tháng 4 2017

Bảng biến thiên

Chọn C.

AH
Akai Haruma
Giáo viên
9 tháng 11 2021

Lời giải:

$A=x^4-4x^3+7x^2-12x+75$

$=(x^2-2x)^2+3x^2-12x+75$

$=(x^2-2x)^2+3(x^2-4x+4)+63$

$=(x^2-2x)^2+3(x-2)^2+63\geq 63$

Vậy $A_{\min}=63$. Giá trị này đạt tại $x^2-2x=x-2=0$

$\Leftrightarrow x=2$