K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 3 2017

Áp dụng định lý Bơ-du:

Thay \(f\left(2\right)\)vào\(f\left(x\right)\)ta được:

\(2^4-9.2^3+21.2^2+2+k=0\)

\(\Leftrightarrow16-72+189+2+k=0\)

\(\Leftrightarrow135+k=0\)

\(\Leftrightarrow k=-135\)

Vậy đa thức x4-9x3+21x2+x+k \(⋮\) x2-x-2 tại k=-135

18 tháng 8 2017

21.\(2^2\) làm s mà bằng 189 dk bạn

13 tháng 11 2021

\(\Leftrightarrow2x^3-3x^2+x+a=\left(x+3\right)\cdot a\left(x\right)\)

Thay \(x=-3\Leftrightarrow-54-27-3+a=0\Leftrightarrow a=84\)

13 tháng 11 2021

Cảm ơn bạn nhiều nhưng có cách khác không ạ. Cụ thể hơn là chia đa thức 1 biến đã sắp xếp ý. Chứ cách trên mình đọc không hiểu gì hết :((((

 

14 tháng 4 2020

Đa thức \(K\left(x\right)=6x^3-2x^2-ax-2\)chia hết cho nhị thức 2x - 3 khi \(\frac{3}{2}\)là nghiệm của K(x)

hay \(K\left(\frac{3}{2}\right)=0\Leftrightarrow6.\left(\frac{3}{2}\right)^3-2.\left(\frac{3}{2}\right)^2-\frac{3}{2}a-2=0\)

\(\Leftrightarrow\frac{81}{4}-\frac{9}{2}-\frac{3}{2}a-2=0\Leftrightarrow\frac{3}{2}a=\frac{55}{4}\)

\(\Leftrightarrow a=\frac{55}{6}\)

Vậy \(a=\frac{55}{6}\)thì \(6x^3-2x^2-ax-2\)chia hết cho  2x - 3

8 tháng 2 2021

Vì \(x^{2017}-ax^{2016}+ax-1⋮\left(x-1\right)^2\Rightarrow x^{2017}-ax^{2016}+ax-1=\left(x-1\right)^2.Q\left(x\right)\text{đúng}\forall x\)

Thay x = 1 vào đẳng thức trên, ta có: 

1 - a + a - 1 = 0 (đúng) => Có vô số số hữu tỉ a thoả mãn để bài

8 tháng 2 2021

Mình nghĩ là chia hết cho (x+1)2 thì mới đúng => a = -1 ( Làm tương tự như trên thay x = -1 vào đẳng thức rồi tìm a) 

NV
3 tháng 12 2021

\(6x^2-5x+a=\left(6x^2-5x-6\right)+a+6=\left(3x+2\right)\left(2x-3\right)+a+6\)

Do \(\left(3x+2\right)\left(2x-3\right)⋮3x+2\) nên đa thức đã cho chia hết 3x+2 khi và chỉ khi:

\(a+6=0\Rightarrow a=-6\)

25 tháng 6 2018

Ta có

 

Để phép chia trên là phép chia hết thì R = a + 12 = 0 ó a = -12

Đáp án cần chọn là: C

6 tháng 5 2019

(10 x 2 – 7x + a) ⁝ (2x – 3)

Để 10 x 2 – 7x + a chia hết cho 2x – 3 thì a + 12 = 0 ó a = -12

Đáp án cần chọn là: C

ơ sao lại bôi nhọ chữ thế bạn

29 tháng 8 2021

\(x^3-3x+a⋮\left(x-1\right)^2\\ \Leftrightarrow x^3-3x+a=\left(x-1\right)^2\cdot A\left(x\right)\)

Thay \(x=1\), ta được:

\(1^3-3\cdot1+a=0\\ \Leftrightarrow a=2\)

Vậy \(a=2\) thì thỏa mãn đề 

30 tháng 1 2022

undefined

AH
Akai Haruma
Giáo viên
30 tháng 1 2022

Lời giải:
Đặt $f(x)=ax^3+bx^2-11x+10$

$x^2+x-2=(x-1)(x+2)$

Do đó để $f(x)\vdots x^2+x-2$ thì $f(x)\vdots x-1$ và $f(x)\vdots x+2$

$\Leftrightarrow f(1)=f(-2)=0$ (theo định lý Bê-du về phép chia đa thức) 

$\Leftrightarrow a+b-1=-8a+4b+32=0$

$\Leftrightarrow a=3; b=-2$ 

 

3 tháng 11 2019

Câu hỏi của Phạm Thị Quỳnh Tú - Toán lớp 8 - Học toán với OnlineMath

Tham khảo

23 tháng 12 2022

gọi f(x)=x^3+5x^2-6x+a

g(x)=x-2

ta có

f(x)=x^3+5x^2-6x+a

f(2)=2^3+5*2^2-6*2+a

f(2)=16+a

áp dụng hệ quả bơzu ta có

16+a=0 <=> a=-16

vậy ...

23 tháng 12 2022

x3 + 5x2 - 6x + a \(⋮\) x-2

Đặt  F(x) = x+5x2 - 6x + a 

theo Bezout ta có : F(x) \(⋮\) x - 2 

\(\Leftrightarrow\) F(2) = 0 \(\Leftrightarrow\) 23 + 5.22 -6.2 + a = 0

\(\Leftrightarrow\) 8 + 20 - 12 + a = 0

\(\Leftrightarrow\) 16 + a = 0

\(\Leftrightarrow\) a = -16

Kết luận với a = -16 thì x3 + 5x2 - 6x + a \(⋮\) x -2