Số cặp nguyên thỏa mãn phương trình: là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(x-y\right)\left(x+y\right)=2017=1.2017\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-y=1\\x+y=2017\end{matrix}\right.\\\left\{{}\begin{matrix}x-y=-1\\x+y=-2017\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x=1009\\y=1008\end{matrix}\right.\\\left\{{}\begin{matrix}x=-1009\\y=-1008\end{matrix}\right.\end{matrix}\right.\)
Ta có :
\(2x^4-2x^2y+y^2=16\)
\(\Leftrightarrow\left(x^4-2x^2y+y^2\right)+x^4=16\)
\(\Leftrightarrow\left(x^2-y\right)^2+\left(x^2\right)^2=16\)
Vì \(x,y\) nguyên mà \(16=0^2+\left(2^2\right)^2=0^2+\left[\left(-2\right)^2\right]^2\)
Nên ta sẽ tìm được 2 cặp nghiệm nguyên của hai phương trình này.
Đáp số : 2.
pt <=>\(x^4+\left(x^4-2x^2y+y^2\right)=16\)
\(\Leftrightarrow x^4+\left(x^2-y\right)^2=16\)
\(\Leftrightarrow x^4=16-\left(x^2-y\right)^2\le16\)
\(\Leftrightarrow0\le x^2\le4\) (*)
Do \(x\in Z\) \(\Rightarrow x^2\in N\) và \(x^2\) là số chính phương
=> \(x^2\in\left\{0;1;4\right\}\) \(\Leftrightarrow x\in\left\{0;-1;1;-2;2\right\}\)
Tại x=0 thay vào pt ta được: \(y^2=16\) \(\Leftrightarrow y=\pm4\) => Tìm được 2 cặp
Tại x2=1 thay vào pt tìm được \(\left[{}\begin{matrix}y=1+\sqrt{15}\\y=1-\sqrt{15}\end{matrix}\right.\) không thỏa mãn y nguyên => Loại
Tại \(x^2=4\)thay vào pt tìm được \(y=4\) => Tìm đc 2 cặp
Vậy tìm đc 4 cặp tm
Lời giải:
$2019|y-2020|=1-|x|\leq 1$ do $|x|\geq 0$
$2019|y-2020|\geq 0$
$\Rightarrow 0\leq 2019|y-2020|\leq 1$
Mà $2019|y-2020|$ là số nguyên chia hết cho $2019$ với mọi $y$ nguyên
$\Rightarrow 2019|y-2020|=0$
$\Rightarrow y=2020$
$|x|=1-2019|y-2020|=1-0=1$
$\Rightarrow x=\pm 1$
Vậy $(x,y)=(\pm 1, 2020)$
Có: \(5x^4+10x^2+2y^6+4y^3-6=0\)
<=> \(5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)
<=> \(5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)
Vì x, y nguyên => \(\left(x^2+1\right)^2;\left(x^3+1\right)^2\)là số chính phương
=> \(x^2+1=1\)
và \(y^3+1=2\)
Khi đó: \(\hept{\begin{cases}x=0\\y=1\end{cases}}\)thử lại thỏa mãn.
\(5x^4+10x^2+2y^6+4y^3-6=0\)
\(\Leftrightarrow5x^4+10x^2+5+2y^6+4y^3+2-7-6=0\)
\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)
\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)
mà \(\left\{{}\begin{matrix}\left(x^2+1\right)^2\ge0,\forall x\inℤ\\\left(y^3+1\right)^2\ge0,\forall y\inℤ\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2+1=1\\y^3+1=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x^2=0\\y^3=1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\) thỏa mãn yêu cầu của đề bài.
2x6+y2-2x3y=320
<=> x6 + (x3-y)2 = 320
Vì x; y là các số nguyên nên ta có:
0 <= x6 <= 320
0 <= x2 <= 7 Suy ra x2 = 0; 1; 4
Thay các ẩn x trở lại phương trình ta được các cặp nghiệm nguyên là
(2;24); (-2;-24); (2;-8); (-2;8)
Vậy có 4 cặp (x0;y0) nguyên thỏa mãn bài toán.
cảm ơn mong được giúp đỡ nhiều :))