K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 2 2017

Ta có : \(2x^2+2y^2-2xy+2x+2y+2=0\)

=>\(x^2-2xy+y^2+x^2+2x+1+y^2+2y+1=0\)

=>\(\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)

=>\(\left\{\begin{matrix}x-y=0< =>x=y\\x+1=0=>x=-1\\y+1=0=>y=-1\end{matrix}\right.\)

Thế x=-1;y=-1 vào biểu thức , ta có :

\(\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}=1+0=1\)

28 tháng 2 2017

\(2x^2+2y^2-2xy+2x+2y+2=0\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\left[\begin{matrix}\left(x-y\right)^2=0\Leftrightarrow x=y\\\left(x+1\right)^2=0\Leftrightarrow x=-1\\\left(y+1\right)^2=0\Leftrightarrow y=-1\end{matrix}\right.\)

\(A=\left(x+2\right)^{2016}+\left(y+1\right)^{2017}\)

\(A=\left(-1+2\right)^{2016}+\left(-1+1\right)^{2017}\)

\(A=1+0=1\)

26 tháng 1 2016

- 3;- 4 tick nha

25 tháng 1 2016

i don't know because i don't know

23 tháng 1 2022

BĐT Bunhiacopski:

\(P^2\le3\left(2a+2b+2c\right)=6.2021=12126\)

\(\Leftrightarrow P\le\sqrt{12126}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{2021}{3}\)

10 tháng 3 2016

-16

100%

10 tháng 3 2016

-8 ko phai -16 dau minh chac chan

2 tháng 1 2017

gọi số đó là aaa

ta có aaa chia hết cho 18 nên aaa chia hết cho 2 và 9 , vậy a là chẵn , mà aaa chia hết 9 nên a+a+a chia hết 9

vì a<10 và a>0 nên a+a+a là 9,18 hoặc 27 nên  aaa là 333;666;999

mà a chẵn suy ra số ; 666

tk nha bạn

thank you bạn

(^_^)

NV
29 tháng 4 2021

Từ giả thiết:

\(a^2=2\left(b^2+c^2\right)\ge\left(b+c\right)^2\Rightarrow\left(\dfrac{a}{b+c}\right)^2\ge1\Rightarrow\dfrac{a}{b+c}\ge1\)

\(P=\dfrac{a}{b+c}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ac+bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+2bc}\ge\dfrac{a}{b+c}+\dfrac{\left(b+c\right)^2}{a\left(b+c\right)+\dfrac{1}{2}\left(b+c\right)^2}\)

\(P\ge\dfrac{a}{b+c}+\dfrac{1}{\dfrac{a}{b+c}+\dfrac{1}{2}}\)

Đặt \(\dfrac{a}{b+c}=x\ge1\)

\(\Rightarrow P\ge x+\dfrac{1}{x+\dfrac{1}{2}}=\dfrac{4}{9}\left(x+\dfrac{1}{2}\right)+\dfrac{1}{x+\dfrac{1}{2}}+\dfrac{5}{9}x-\dfrac{2}{9}\)

\(P\ge2\sqrt{\dfrac{4}{9}\left(x+\dfrac{1}{2}\right).\dfrac{1}{\left(x+\dfrac{1}{2}\right)}}+\dfrac{5}{9}.1-\dfrac{2}{9}=\dfrac{5}{3}\)

\(P_{min}=\dfrac{5}{3}\) khi \(x=1\) hay \(a=2b=2c\)

15 tháng 4 2023

Tại sao dòng 6 lại \(+-\) 2/9 vậy ạ?

 

24 tháng 7 2019

26 tháng 6 2017

Chọn B.