Viet da thuc sau thanh dang \(\left(A+B\right)^3\)
\(1+6y+12y^2+8y^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2x+3y\right)^2+2\left(2x+3y\right)+1=\left(2x+3y+1\right)^2\)
a) \(2x^2y^3.\dfrac{1}{4}xy^3\left(-3\right)xy\)
\(=\left(-3.2.\dfrac{1}{4}\right)x^4y^7\)
\(=\dfrac{-3}{2}x^4y^7\)
\(\Rightarrow Hệ\) số: \(\dfrac{-3}{2}\)
Phần biến: \(x^4y^7\)
b) \(\left(-2x^3y\right)^2.xy^2.\dfrac{1}{5}y^5\)
\(=\dfrac{4}{5}x^7y^9\)
\(\Rightarrow Phần\) biến: \(x^7y^9\)
Hệ số: \(\dfrac{4}{5}.\)
a/ \(2x^2y^3\cdot\dfrac{1}{4}xy^3\left(-3xy\right)\)
\(=\left[2\cdot\dfrac{1}{4}\cdot\left(-3\right)\right]\left(x^2.x.x\right)\left(y^3.y^3.y\right)\)
\(=-\dfrac{3}{2}x^4y^7\)
Phần biến: \(x^4y^7\)
Hệ số: \(-\dfrac{3}{2}\)
b/ \(\left(-2x^3y\right)^2\cdot xy^2\cdot\dfrac{1}{5}y^5=4x^6y^2\cdot xy^2\cdot\dfrac{1}{5}y^5\) \(=4\cdot\dfrac{1}{5}\left(x^6\cdot x\right)\left(y^2\cdot y^2\cdot y^5\right)=\dfrac{4}{5}x^7y^9\)
Phần biến: \(\dfrac{4}{5}\)
Hệ số: \(x^7y^9\)
2. Viết hạng tử thích hợp vào dấu * để mỗi đa thức sau trở thành bình phương của một tổng hoặc một hiệu.
a) \(25x^2+\cdot\cdot\cdot+81\)
\(=\left(5x\right)^2+...+9^2\)
\(=\left(5x\right)^2+2.5x.9+9^2\)
\(=25x^2+90x+81\)
b) \(64x^2-\cdot\cdot\cdot+9\)
\(=\left(8x\right)^2-\cdot\cdot\cdot+3^2\)
\(=\left(8x\right)^2-2.8x.3+3^2\)
\(=64x^2-48x+9\)
a) 5 ; x+y ;2xy đồng dạng với 4xy ;a (x) = 25x + 2x2
b) -2xy
a) \(-y^2+\dfrac{1}{9}\)
\(=-\left(y^2-\left(\dfrac{1}{3}\right)^2\right)\)
\(=-\left(y+\dfrac{1}{3}\right)\left(y-\dfrac{1}{3}\right)\)
b) \(4^4-256\)
\(=4^4-4^4\)
\(=0\)
a) x^2+4x+3=x^2+x+3x+3=x(x+1)+3(x+1)=(x+1)(x+3)
b) 4x^2+4x-3=4x^2+4x+1-4=(2x+1)^2-4=(2x+1-2)(2x+1+2)=(2x-1)(2x+3)
c) x^2-x-12=x^2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)
d) 4x^4+4x^2y^2-8y^4=4(x^4+x^2y^2-2y^4)=4(x^4-x^2y^2+2x^2y^2-2y^4)=4(x^2-y^2)(x^2+2y^2)=4(x-y)(x+y)(x^2+2y^2)
a) \(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=\left(x^2+x\right)+\left(3x+3\right)\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
c) \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=\left(x^2-4x\right)+\left(3x-12\right)\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
1. 2xy2 +x2y4+1 = (xy2+1)2
2. a)3x2+3x-10x-10=3x(x+1)-10(x+1)=(x+1)(3x-10)
b)2x2-5x-7=2x2+2x-7x-7=2x(x+1)-7(x+1)=(x+1)(2x-7)
Mong có thể giúp được bạn
\(\Leftrightarrow\left(3x-1\right)^2-4^2=0\)
\(\Leftrightarrow\left(3x-1-4\right)\left(3x-1+4\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(3x+3\right)=0\Leftrightarrow\orbr{\begin{cases}3x-5=0\\3x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{5}{3}\\x=-1\end{cases}}}\)
\(1+6y+12y^2+8y^3=1^3+3.1^3.2y+3.1.\left(2y\right)^2+\left(8y\right)^3=\left(1+2y\right)^3\)