K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2017

Gọi d là ước chung nguyên tố của 2n + 7 và 5n + 2

\(\Rightarrow\left\{\begin{matrix}2n+7⋮d\\5n+2⋮d\end{matrix}\right.\)

+) Vì : 2n + 7 \(⋮\) d ; 5 \(\in N\Rightarrow5\left(2n+7\right)⋮d\Rightarrow10n+35⋮d\)

+) Vì : 5n + 2 \(⋮d;2\in N\Rightarrow2\left(5n+2\right)⋮d\Rightarrow10n+4⋮d\)

Mà : \(10n+35⋮d\)

\(\Rightarrow\left(10n+35\right)-\left(10n+4\right)⋮d\)

\(\Rightarrow10n+35-10n-4⋮d\)

\(\Rightarrow31⋮d\Rightarrow d\in\left\{-1;1;-31;31\right\}\)

Mà d nguyên tố \(\Rightarrow d=31\)

Với d = 31

\(\Rightarrow5n+2⋮31\) ; \(6\in N\) \(\Rightarrow6\left(5n+2\right)⋮31\Rightarrow30n+12⋮31\)

\(\Rightarrow31n-n+12⋮31\Rightarrow31n-\left(n-12\right)⋮31\)

\(\Rightarrow n-12⋮31\Rightarrow n-12=31k\Rightarrow n=31k+12\)

Với n = 31k + 12 \(\left(k\in N\right)\)

2n + 7 = 2 ( 31k + 12 ) + 7 = 62k + 24 + 7 = 62k + 31

= 31 ( 2k + 1 ) \(⋮\) 31

5n + 2 = 5 ( 31k + 12 ) + 2 = 105k + 60 + 2 = 105k + 62

= 31 ( 5k + 2 ) \(⋮\) 31

Vậy ...

12 tháng 3 2017

Bài này mình đánh sai đề, xin lỗi bạn nhé!

a) \(\frac{2n+3}{4n+1}\) là phân số tối giản

\(\frac{2n+3}{4n+1}\)\(\frac{2+3}{4+1}\) =\(\frac{5}{5}\)=1

=>n=1

mình ko chắc là đúng nha

14 tháng 4 2020

b1 : 

a, gọi d là ƯC(2n + 1;2n +2) 

=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d

=> 2n + 2 - 2n - 1 chia hết cho d

=> 1 chia hết cho d

=> d = 1

=> 2n+1/2n+2 là ps tối giản

14 tháng 4 2020

Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:

A=2n+1/2n+2

Gọi ƯCLN của chúng là a 

Ta có:2n+1 chia hết cho a

           2n+2 chia hết cho a

- 2n+2 - 2n+1 

- 1 chia hết cho a

- a= 1

  Vậy 2n+1/2n+2 là phân số tối giản

B=2n+3/3n+5

Gọi ƯCLN của chúng là a

2n+3 chia hết cho a

3n+5 chia hết cho a

Suy ra 6n+9 chia hết cho a

            6n+10 chia hết cho a

6n+10-6n+9

1 chia hết cho a 

Vậy 2n+3/3n+5 là phân số tối giản

Mình chỉ biết thế thôi!

#hok_tot#

7 tháng 4 2021

Vì n là số nguyên nên 2n + 7 và 5n + 2 là số nguyên.

Gọi \(d\inƯC\left(2n+7,5n+2\right)\)

\(\Rightarrow2n+7⋮d\)và \(5n+2⋮d\)

\(\Rightarrow5\left(2n+7\right)-2\left(5n+2\right)⋮d\Rightarrow10n+35-10n-4⋮d\)

\(\Rightarrow31⋮d\Rightarrow d\in\left\{1;-1;31;-31\right\}\)

Ta có \(2n+7⋮31\Leftrightarrow2n+7+31⋮31\Leftrightarrow2n+38⋮31\Leftrightarrow2\left(n+19\right)⋮31\)

Vì \(\left(2,31\right)=1\Rightarrow n+19⋮31\Leftrightarrow n+19=31k\Leftrightarrow n=31k-19\)

+) Nếu \(n=31k-19\)

\(\Rightarrow2n+7=2\left(31k-19\right)+7=62k-38+7=62k-31\)

\(=31\left(2k-1\right)⋮31\)mà \(2n+7>2\Rightarrow2n+7\)là hợp số ( loại )

+) Nếu \(n\ne31k-19\)thì \(2n+7\)ko chia hết cho 31.

\(\RightarrowƯC\left(2n+7,5n+2\right)=\left\{1;-1\right\}\)

\(\Rightarrow\frac{2n+7}{5n+2}\)là PSTG .

                       Vậy n\\(n\ne31k-19\)thì \(\frac{2n+7}{5n+2}\)là PSTG \(\forall\)số nguyên n.

13 tháng 3 2022

 có thể làm cách khác nhé

 

2 tháng 2 2017

Là số 0.

Nếu bạn nào thấy đúng, nhớ k cho mình nha !

2 tháng 2 2017

bạn giải ra được không , tớ cần lời giải chứ đáp án thì tớ biết

ta có

\(\frac{2n+7}{5n+2}=\frac{2n+2+5}{2n+2+3n}=2+\frac{5}{5n+2}\)

để \(\frac{5}{5n+2}\)là số nguyên thì 5\(⋮\)(5n+2) và n thuộc N

=> 5n+2 \(\in\)Ư(5)={-1;-5;1;5}

* 5n+2=(-1)       => n=(-0,6)       loại

* 5n+2=(-5)       => n=(-0,4)       loại

* 5n+2=1          => n=(-0,2)       loại

* 5n+2=5          => n=0,6          loại

vậy không có giá trị n nào thỏa mãn

28 tháng 1 2016

7/5

28 tháng 1 2016

7/5,ai kết bạn tui cho ti.ck

20 tháng 2 2017

nghĩa là 2n+7 vã 5n+2 ko có ước chung

20 tháng 2 2017

2n+7 và 5n+2 là 2 số nguyên tố cùng nhau có ước chung là 1 và -1 chứ ko phải là ko có ước chung nha bạn vo nhật lê