Ngiệm của phương trình \(\frac{6x-1}{3x+2}-\frac{2x-5}{x-3}=0\) là x=
(ghi cách giải luôn nha)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=>\frac{8}{2x^2-6x+2}-\frac{3}{2x^2-6x+2}=-1\)
\(=>\frac{5}{2x^2-6x+2}=-1\)
\(=>2x^2-6x+2=-5\)
\(=>2x^2-6x=-7\)
\(=>x.\left(2x-6\right)=-7\)
\(=>2x-6=-\frac{7}{x}\)
\(=>2x=\frac{-7+6x}{x}\)
\(=>3x=-7+6x\)
\(=>-7=-3x\)
\(=>x=\frac{-7}{-3}=\frac{7}{3}\)
E ms lớp 7 nên giải hơi dài thông cảm ạ :>
\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\)
<=> \(\frac{4}{\left(x-1\right)\left(x-2\right)}-\frac{3}{2x^2-6x+1}+1=0\)
<=> 4(2x2 - 6x + 1) - 3(x - 1)(x - 2) + (x - 1)(x - 2)(2x2 - 6x + 1) = 0
<=> 28x2 - 30x + 2x4 - 12x3 = 0
<=> 2x(14x - 15 + x2 - 6x2) = 0
<=> 2x(x2 - 3x + 5)(x - 3) = 0
vì x2 - 3x + 5 khác 0 nên:
<=> 2x = 0 hoặc x - 3 = 0
<=> x = 0 hoặc x = 3
\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\)
\(\Leftrightarrow\frac{2x^4-12x^3+28x^2-30x}{2x^4-12x^3+28x^2-15x+2}=0\)
\(\Leftrightarrow2x^4-12x^3+28x^2-30x=0\)
\(\Leftrightarrow2\left(x-3\right)\left(x^2-3x+5\right)=0\)
mà \(x^2-3x+5\) khác 0
\(\Rightarrow\orbr{\begin{cases}2x=0\\x-3=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=3\end{cases}}\)
A . 3x + 2(x + 1) = 6x - 7
<=> 3x + 2x + 2 = 6x -7
<=> 5x - 6x = -7 - 2
<=> -x = -9
<=> x =9
B . \(\frac{x+3}{5}\).< \(\frac{5-x}{3}\)
=> 3(x +3) < 5(5 -x)
<=> 3x+9 < 25 - 5x
<=> 3x + 5x < 25 - 9
<=> 8x < 16
<=> x < 2
C . \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2-3x-4}\)=\(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{x^2+x-4x-4_{ }}\)= \(\frac{2}{x-4}\)
<=> \(\frac{5}{x+1}\)+ \(\frac{2x}{\left(x+1\right)\left(x-4\right)}\)= \(\frac{2}{x-4}\)
<=> 5(x - 4) + 2x = 2(x +1)
<=> 5x - 20 + 2x = 2x + 2
<=>7x - 2x = 2 + 20
<=> 5x = 22
<=> x =\(\frac{22}{5}\)
Có vẻ đề đúng
\(P=\frac{3x^2y-1}{4xy}\)
\(\left(x^2+y^2+1^2-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)
\(\left(x+y-1\right)^2+\left(y+2\right)^2=0\)
\(\hept{\begin{cases}x+y-1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}\Rightarrow}P=\frac{3.9.\left(-2\right)-1}{4.3.\left(-2\right)}=\frac{55}{24}}\)
Cách giải đúng rồi nhưng sai hằng đảng thức nha bạn
\(x^2+y^2+1-2xy-2x+2y=\left(y-x+1\right)^2\)
rồi sửa x= -1 là được
\(\frac{\left(6x-1\right)\left(x-3\right)-\left(2x-5\right)\left(3x+2\right)}{\left(3x+2\right)\left(x-3\right)}=0\) với x\(\ne-\frac{2}{3};3\)
\(\Leftrightarrow6x^2-19x+3-\left(6x^2-11x-10\right)\)= 0
\(\Leftrightarrow-8x+13=0\)
\(\Rightarrow x=\frac{13}{8}\left(TMĐK\right)\)
vậy n0 là \(\frac{13}{8}\)
Ta có :
\(\frac{6x-1}{3x+2}-\frac{2x-5}{x-3}=0=>\frac{\left(6x-1\right)\left(x-3\right)}{\left(3x+2\right)\left(x-3\right)}-\frac{\left(2x-5\right)\left(3x+2\right)}{\left(x-3\right)\left(3x+2\right)}=0\)
=>\(\frac{\left(6x-1\right)\left(x-3\right)-\left(2x-5\right)\left(3x+2\right)}{\left(x-3\right)\left(3x+2\right)}=0\)
\(=>\frac{6x^2-19x+3-6x^2+11x+10}{\left(x-3\right)\left(3x+2\right)}=0\)
=>\(\frac{-8x+13}{\left(x-3\right)\left(3x+2\right)}=0=>-8x+13=0=>x=1,625=\frac{13}{8}\)