Tìm số dư trong phép chia:\((x)^{30}+(x)^{4}-(x)^{1975}+1\) cho x-1.
Giúp mình với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do đa thức (x - 1)(x - 3) là đa thức bậc hai nên đa thức dư khi chia cho nó sẽ có dạng ax + b
Đặt \(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b\)
Ta có :
\(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b=\left(x-1\right)\left(x-3\right)g\left(x\right)+a\left(x-1\right)+\left(a+b\right)\)
\(=\left(x-1\right)\left[\left(x-3\right)g\left(x\right)+a\right]+\left(a+b\right)\)
Do P(x) chia (x - 1) dư 4 nên a + b = 4
\(P\left(x\right)=\left(x-1\right)\left(x-3\right)g\left(x\right)+ax+b=\left(x-3\right)\left(x-1\right)g\left(x\right)+a\left(x-3\right)+\left(3a+b\right)\)
\(=\left(x-1\right)\left[\left(x-1\right)g\left(x\right)+a\right]+\left(3a+b\right)\)
Do P(x) chia (x - 3) dư 14 nên 3a + b = 14
Vậy nên ta tìm được a = 5, b = -1 hay đa thức dư là 5x - 1.
Vì x30 + x4 - x1975 chia hết cho x =>x30 + x4 - x1975 +1 chia hết cho x-1
(x+1)(x+3)(x+5)(x+7)+2002
=(x+1)(x+7)(x+3)(x+5)+2004
=(x^2+8x+7)(x^2+8x+15)+2004
đặt x^2+8x+11=t
=> (t-4)(t+4)+2004
=t^2-16+2004
=t^2+1988
=x^2+8x+11+1988
=x^2+8x+1999
(x^2+8x+1999 ):(x^2+8x+1)=1 dư 1998 (chia đa thức )
vậy số dư là 1998
có j ko hiểu thì cứ hỏi nha ^^
Bạn ơi bạn đặt t = x2 + 8x + 11
chứ có phải t2 = x2 + 8x + 11
đâu bạn
nhiều cách
đặt x+1=y=> x=y-1
Biểu thức=(y-1)^30+(y-1)^4-(y-1)^1975+1
khai triển biêu thúc trên số hạng không chứa y là
1+1+1+1=4
ồ dư 4
1. (x + 1) + (x + 2) + (x + 3) + ... + (x + 100) = 6050
100x + (1 + 2 + 3 +...+ 100) = 6050
100x + (100 + 1)100 : 2 = 6050
100x + 5050 = 6050
=>100x = 6050 - 5050 = 1000
=> x = 1000 : 100 = 10
2. Gọi số tự nhiên cần tìm là x.
Vậy số thứ 2 là : x + 2
Số thứ 3 là : x + 4
Số thứ 4 là : x + 6
Số thứ 5 là : x + 8
Ta có :
x + (x + 2) + (x + 4) + (x + 6) + (x + 8) = 9925
5x + 20 = 9925
=>5x = 9925 - 20 = 9905
=> x = 9905 : 5 = 1981
=> x + 2 = 1981 + 2 = 1983
=>x + 4 = 1981 + 4 = 1985
=>x + 6 = 1981 + 6 = 1987
=>x + 8 = 1981 + 8 = 1989
Vậy 5 số tự nhiên lẻ liển tiếp đó lần lượt là 1981, 1983, 1985, 1987, 1989.
3. Gọi số bị chia là x, số chia là y, ta có :
x + y + 3 = 195 => x + y = 195 - 3 = 192 => x = 192 - y
\(\frac{x}{y}=6\) (dư 3) \(\Rightarrow\frac{x-3}{y}=6\)
x - 3 = 6y
192 - y - 3 = 6y
192 - 3 = 6y + y
=> 7y = 189
=> y = 189 : 7 = 27
=> x = 192 - y = 192 - 27 = 165
Vậy số bị chia là 165, số chia là 27.
1, \(\left(x+1\right)+\left(x+2\right)+\left(x+3\right)+...+\left(x+100\right)=6050\)
\(\left(x+x+x+...+x\right)+\left(1+2+3+...+100\right)=6050\)
Xét dãy số : 1 + 2 + 3 + ... + 100 = 6050
Số số hạng của dãy số trên là :
( 100 - 1 ) : 1 + 1 = 100 ( số hạng )
Tổng của dãy số trên là :
( 100 + 1 ) . 100 : 2 = 5050
Thay vào , ta có :
100x + 5050 = 6050
100x = 6050 - 5050
100x = 1000
=> x = 1000 : 100
=> x = 10
Vậy x = 10
2, Gọi 5 số tự nhiên lẻ liên tiếp là : a ; a + 2 ; a + 4 ; a + 6 ; a + 8
=> Tổng của 5 số tự nhiên lẻ liên tiếp là :
a + ( a + 2 ) + ( a + 4 ) + ( a + 6 ) + ( a + 8 ) = 5a + 20 = 9925
=> 5a = 9925 - 20
=> 5a = 9905
=> a = 9905 : 5
=> a = 1981
Vậy số lẻ thứ nhất là : 1981
=> Số lẻ thứ hai là : 1981 + 2 = 1983
Số lẻ thứ ba là : 1983 + 2 = 1985
Số lẻ thứ tư là : 1985 + 2 = 1987
Số lẻ thứ năm là : 1987 + 2 = 1989
Vậy 5 số tự nhiên lẻ liến tiếp là : 1981 ; 1983 ; 1985 ; 1987 ; 1989
5,7:x =1,62(dư 0,03)
5,7-0,03=1,62x
5,67 =1,62x
x =3,5
5,7 : x = 1,62 [dư 0,03]
x = [5,7 - 0.03] : 1,62
x = 5,67 : 1,62
x = 3,5
Đặt x30 + x4 + x2015 + 1 = f(x) . Ta có : f(1) = 130 + 14 + 12015 + 1 = 4 ; f(-1) = (-1)30 + (-1)4 + (-1)2015 + 1 = 0.
Vì đa thức chia bậc 2 nên đa thức dư bậc 1 có dạng ax + b. Do đó :
f(x) = (x2 -1).q(x) + ax + b.
f(1) = (12 - 1).q(x) + a.1 + b = a + b ; f(-1) = ((-1)2 - 1).q(x) + a.(-1) + b = - a + b
Vậy a + b = 4 và - a + b = 0. Giải ra đc a = b = 2. Suy ra đa thức dư
áp dụng định lí bezout
cho x-1 =0\(\Rightarrow\)x=1.thay x=1 vào số bị chia ta đc
130+14-11975+1
theo bezout thì số bị chia phải bằng 0 nên kết quả sẽ là số dư
1+1-1+1=2
vậy số dư là 2
dư 2