K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 2 2017

\(\left(-8\right)^2.69+69.\left(-6\right)^2\)

\(=69.\left[\left(-8\right)^2+\left(-6\right)^2\right]\)

\(=69.\left[64+36\right]\)

\(=69.100\)

\(=6900\)

15 tháng 2 2017

(−8)2(mình không biết viết lũy thừa)×69+69×(−6)2

(−8)2×69+69×(−6)2

=64 × 69+69×36

=69×(64+36)

=69*100

=6900

AH
Akai Haruma
Giáo viên
13 tháng 7 2018

Lời giải:

PT \(\Leftrightarrow \frac{(x+4)-(x+2)}{(x+2)(x+4)}+\frac{(x+8)-(x+4)}{(x+4)(x+8)}+\frac{(x+14)-(x+8)}{(x+8)(x+14)}=\frac{x}{(x+2)(x+14)}\)

\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)

\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)

\(\Leftrightarrow \frac{12}{(x+2)(x+14)}=\frac{x}{(x+2)(x+14)}\)

\(\Rightarrow x=12\) (thỏa mãn)

Vậy......

27 tháng 5 2017

Ta có:

\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{70}=\left[1+\frac{1}{70}\right]+\left[\frac{1}{2}+\frac{1}{69}\right]+\left[\frac{1}{3}+\frac{1}{68}\right]+...+\left[\frac{1}{35}+\frac{1}{36}\right]\)

\(=\frac{71}{1.70}+\frac{71}{2.69}+\frac{71}{3.68}+...+\frac{71}{35.36}\)

\(=71\left[\frac{1}{1.70}+\frac{1}{2.69}+\frac{1}{3.68}+...+\frac{1}{35.36}\right]⋮71\)

=> \(A=1\times2\times3\times4\times...\times70\times\left[1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{70}\right]⋮71\)=> ĐPCM

AI THẤY ĐÚNG NHỚ ỦNG HỘ NHA

27 tháng 5 2017

Xét \(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{70}=\left(1+\frac{1}{70}\right)+\left(\frac{1}{2}+\frac{1}{69}\right)+...+\left(\frac{1}{35}+\frac{1}{36}\right)\)

\(=\frac{71}{1.70}+\frac{71}{2.69}+...+\frac{71}{35.36}=71\left(\frac{1}{1.70}+\frac{1}{2.69}+...+\frac{1}{35.36}\right)\)

=>\(A=1.2.3.4...71.\left(\frac{1}{1.70}+\frac{1}{2.69}+...+\frac{1}{35.36}\right)⋮71\)

Vậy A chia hết cho 71

20 tháng 1 2019

Câu b: Đặt  \(B=\left(\frac{1}{2}-1\right)\cdot\left(\frac{1}{3}-1\right)\cdot\left(\frac{1}{4}-1\right)\cdot...\cdot\left(\frac{1}{2004}-1\right)\)

Ta có:  \(\frac{1}{2}-1=\left(-\frac{1}{2}\right);\frac{1}{3}-1=\left(-\frac{2}{3}\right);...;\frac{1}{2004}-1=\left(-\frac{2003}{2004}\right)\)

\(\Rightarrow B=\left(-\frac{1}{2}\right)\cdot\left(-\frac{2}{3}\right)\cdot...\cdot\left(-\frac{2003}{2004}\right)\)

Vì B là 2003 thừa số âm nhân lại với nhau nên B là số âm

\(\Rightarrow B=-\left(\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{2003}{2004}\right)=-\frac{1}{2004}\)

20 tháng 1 2019

Câu a: Đặt  \(A=1+2^4+2^8;B=1+2+2^2+...+2^{11}\)

\(\Rightarrow16A=2^4+2^8+2^{12}\)   \(\Rightarrow15A=2^{12}-1\)   \(\Rightarrow A=\frac{2^{12}-1}{15}\)    \(\left(1\right)\)

\(\Rightarrow2B=2+2^2+2^3+...+2^{12}\)   \(\Rightarrow B=2^{12}-1\)   \(\left(2\right)\)

Từ  \(\left(1\right)\) và    \(\left(2\right)\)   \(\Rightarrow A:B=\frac{2^{12}-1}{15}:\left(2^{12}-1\right)=\frac{1}{15}\)

21 tháng 6 2017

\(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)\)

\(=\left(2-1\right)\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)...\left(2^{32}+1\right)\)

\(=\left(2^4-1\right)...\left(2^{32}+1\right)\)

..............................................................

\(=2^{64}-1\)

29 tháng 6 2017

42.(-53)+47.(-156)+(-114).(-47)

1 tháng 1 2019

BỎ VẾ 2*6 NHỎ ĐẰNG SAU NHA MN

26 tháng 1 2022

\(A=\dfrac{-19}{9}.\dfrac{1}{2}-\dfrac{4}{11}.\dfrac{-11}{9}+\left(-\dfrac{2}{3}\right)=-\dfrac{23}{18}\)

\(B=\left(-\dfrac{15}{6}\right):\dfrac{-1}{2}+\dfrac{7}{-12}-\dfrac{1}{3}.\dfrac{-11}{2}=\dfrac{25}{4}\)

\(C=\dfrac{3}{4}.\left(-8\right)-\dfrac{1}{3}.\dfrac{-7}{2}-\dfrac{5}{18}=-\dfrac{46}{9}\)

\(A=\dfrac{-19}{18}+\dfrac{4}{9}-\dfrac{2}{3}=\dfrac{-19}{18}+\dfrac{8}{18}-\dfrac{12}{18}=\dfrac{-23}{18}\)

\(B=\dfrac{-5}{2}\cdot\dfrac{-2}{1}-\dfrac{7}{12}+\dfrac{11}{6}=\dfrac{5\cdot12-7+22}{12}=\dfrac{75}{12}=\dfrac{25}{4}\)

 

16 tháng 2 2023

\(C=\dfrac{5\times2^{12}\times3^8-3^9\times2^{12}}{2^2\times2^{13}\times3^8+2\times2^{12}\times\left(-3^9\right)}=\dfrac{3^8\times2^{12}\times\left(5-3\right)}{2^{15}\times3^8+2^{13}\times\left(-3\right)^9}\)

\(=\dfrac{3^8\times2^{12}\times2}{2^{13}\times3^8\times\left(4-3\right)}=\dfrac{1}{1}=1\)

\(#PaooNqoccc\)