CMR a/b + b/a > 2 với a; b cùng dấu
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1: Theo đề bài: \(VT=\left(a-1\right)+\frac{1}{\left(a-1\right)}+1\ge2\sqrt{\left(a-1\right).\frac{1}{a-1}}+1=2+1=3^{\left(đpcm\right)}\)
Đẳng thức xảy ra khi \(\left(a-1\right)=\frac{1}{a-1}\Leftrightarrow a=2\)
Bài 2: \(BĐT\Leftrightarrow\left(a^2+2\right)^2\ge4\left(a^2+1\right)\)
\(\Leftrightarrow a^4+4a^2+4\ge4a^2+4\)
\(\Leftrightarrow a^4\ge0\) (đúng). Đẳng thức xảy ra khi a = 0
Bài 3: Hình như sai đề thì phải ạ. Nếu a = 1,5 ; b = 1 thì \(\frac{19}{10}=1,9< 3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ Biến đổi tương đương:
\(\Leftrightarrow a^2c+ab^2+bc^2\ge b^2c+ac^2+a^2b\)
\(\Leftrightarrow a^2c-a^2b+ab^2-ac^2+bc^2-b^2c\ge0\)
\(\Leftrightarrow a^2\left(c-b\right)-\left(ab+ac\right)\left(c-b\right)+bc\left(c-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a^2+bc-ab-ac\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a\left(a-b\right)-c\left(a-b\right)\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(a-c\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(c-b\right)\left(c-a\right)\left(b-a\right)\ge0\) luôn đúng do \(a\le b\le c\)
Vậy BĐT ban đầu đúng
Câu 2: Đề sai, cho \(a=b=c=1\Rightarrow3\ge6\) (sai)
Đề đúng phải là \(\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
\(VT=\frac{a^2}{abc}+\frac{b^2}{abc}+\frac{c^2}{abc}=\frac{a^2+b^2+c^2}{abc}\ge\frac{ab+ac+bc}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)
Câu 3: Không phải với mọi x; y với mọi \(x;y\) dương
Biến đổi tương đương do mẫu số vế phải dương nên ta được quyền nhân chéo:
\(\Leftrightarrow3x^3\ge\left(2x-y\right)\left(x^2+xy+y^2\right)\)
\(\Leftrightarrow3x^3\ge2x^3+x^2y+xy^2-y^3\)
\(\Leftrightarrow x^3+y^3-x^2y-xy^2\ge0\)
\(\Leftrightarrow x^2\left(x-y\right)-y^2\left(x-y\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)\left(x^2-y^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\) (luôn đúng)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta viết lại BĐT cần CM như sau :
\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\) ≥ \(\dfrac{3}{2}\) ( Sửa đề )
⇔ \(\dfrac{a^2}{a\left(b+c\right)}+\dfrac{b^2}{b\left(a+c\right)}+\dfrac{c^2}{c\left(a+b\right)}\) ≥ \(\dfrac{3}{2}\)
Áp dụng BĐT Cô - Si dạng Engel , ta có :
\(\dfrac{a^2}{a\left(b+c\right)}+\dfrac{b^2}{b\left(a+c\right)}+\dfrac{c^2}{c\left(a+b\right)}\) ≥ \(\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ac\right)}\) ( *)
Ta có BĐT : x2 + y2 + z2 ≥ xy + yz + xz
⇒ a2 + b2 + c2 ≥ ab + bc + ac
⇔ a2 + b2 + c2 + 2ab + 2bc + 2ac ≥ 3( ab + bc + ac)
⇔ ( a + b + c)2 ≥ 3( ab + bc + ac) ( **)
Từ ( * ; **)
⇒ \(\dfrac{a^2}{a\left(b+c\right)}+\dfrac{b^2}{b\left(a+c\right)}+\dfrac{c^2}{c\left(a+b\right)}\) ≥ \(\dfrac{3}{2}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
có
\(a>b\Leftrightarrow a-b>0\) (1)
\(a,b>0\Leftrightarrow2ab>0\)
\(a^2+2ab+b^2>a^2+b^2\Leftrightarrow\left(a+b\right)^2-\left(a^2+b^2\right)>0\) (2)
nhân 1 ,2 thì dc
\(\left(a-b\right)\left\{\left(a+b\right)^2-\left(a^2+b^2\right)\right\}>0\)
\(\frac{\left(a-b\right)\left(a+b\right)^2-\left(a-b\right)\left(a^2+b^2\right)}{\left(a+b\right)\left(a^2+b^2\right)}>0\) " nhân 2 vế cho 1/(a+b(a^2+b^2)
\(\frac{\left(a-b\right)\left(a+b\right)\left(a+b\right)}{\left(a+b\right)\left(a^2+b^2\right)}-\frac{\left(a-b\right)\left(a^2+b^2\right)}{\left(a+b\right)\left(a^2+b^2\right)}>0\)
\(\frac{a^2-b^2}{a^2+b^2}-\frac{a-b}{a+b}>\frac{0\Leftrightarrow a^2-b^2}{a^2+b^2}>\frac{a-b}{a+b}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(a-b\right)^2\ge0\Leftrightarrow a^2+b^2\ge2ab\Leftrightarrow2\left(a^2+b^2\right)\ge a^2+b^2+2ab=\left(a+b\right)^2=2^2=4\)
\(\Leftrightarrow a^2+b^2\ge2\).
Dấu \(=\)khi \(a=b=1\).
b) \(\left(a^2-b^2\right)\ge0\Leftrightarrow a^4+b^4\ge2a^2b^2\Leftrightarrow2\left(a^4+b^4\right)\ge a^4+b^4+2a^2b^2=\left(a^2+b^2\right)^2\ge2^2=4\)
\(\Leftrightarrow a^4+b^4\ge2\)
Dấu \(=\)khi \(a=b=1\).
c) Bạn làm tương tự.
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 1:
a) Áp dụng BĐT Cô-si:
\(VT=a-1+\frac{1}{a-1}+1\ge2\sqrt{\frac{a-1}{a-1}}+1=2+1=3\)
Dấu "=" xảy ra \(\Leftrightarrow a=2\).
b) BĐT \(\Leftrightarrow a^2+2\ge2\sqrt{a^2+1}\)
\(\Leftrightarrow a^2+1-2\sqrt{a^2+1}+1\ge0\)
\(\Leftrightarrow\left(\sqrt{a^2+1}-1\right)^2\ge0\) ( LĐ )
Dấu "=" xảy ra \(\Leftrightarrow a=0\).
Bài 2: tương tự 1b.
Bài 3:
Do \(a,b,c\) dương nên ta có các BĐT:
\(\frac{a}{a+b+c}< \frac{a}{a+b}< \frac{a+c}{a+b+c}\)
Tương tự: \(\frac{b}{a+b+c}< \frac{b}{b+c}< \frac{b+a}{a+b+c};\frac{c}{a+b+c}< \frac{c}{c+a}< \frac{c+b}{a+b+c}\)
Cộng theo vế 3 BĐT:
\(\frac{a+b+c}{a+b+c}< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{2\left(a+b+c\right)}{a+b+c}\)
\(\Leftrightarrow1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)( đpcm )
\(\frac{a}{b}+\frac{b}{a}-2=\frac{a^2+b^2}{ab}-2=\frac{a^2-2ab+b^2}{ab}=\frac{\left(a+b\right)^2}{ab}\)lớn hơn 0 nênđiều kia đúng