Tìm giá trị nhỏ nhất của biểu thức sau : D = -10/x+10
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt D = 2|x - 3| + |2x - 10|
D = |x - 3| + |x - 3| + |2x - 10|
D = |x - 3| + |x - 3| + |10 - 2x|
Vì |x - 3| + |x - 3| + |10 - 2x| ≥ |x - 3 + x - 3 + 10 - 2x| = |4| = 4
=> Min D = 4
Dấu " = " xảy ra <=> (x - 3)(x - 3)(10 - 2x) ≥ 0
Th1: x - 3 ≥ 0 => x ≥ 3
10 - 2x ≥ 0 => x ≤ 5
=> thỏa mãn
Th2: x - 3 ≤ 0 => x ≤ 3
10 - 2x ≤ 0 => x ≥ 5
=> ko thỏa mãn
Vậy min D = 4 khi 3 ≤ x ≤ 5
P/s: e 2k8 nên làm đại, ko chắc
\(\left(x^2-9\right)^2+\left|y-2\right|+10\)
Ta có:
\(\left(x^2-9\right)^2\ge0\)
\(\left|y-2\right|\ge0\)
\(\Rightarrow\left(x^2-9\right)^2+\left|y-2\right|+10\ge10\)
Vậy giá trị nhỏ nhất của biểu thức đã cho là 10 khi \(x=\pm3;y=2\)
A=|x-9|+10
Ta có |x-9| >= 0 với mọi x
=> |x-9|+10 >= 0+10
hay A >= 10
Dấu "=" xảy ra <=> |x-9|=0
<=> x-9=0
<=> x=9
Vậy Min A=10 đạt được khi x=9
A = |x - 9| + 10
Ta có: \(\left|x-9\right|\ge0\)với \(\forall x\)
\(\Rightarrow\left|x-9\right|+10\ge10\)
Dấu "=" xảy ra khi:
|x - 9| = 0
=> x - 9 = 0
=> x = 9
Vậy AMIN = 10 khi x = 9
\(A=|x-9|+10\)
Vì \(|x-9|\ge0\)
\(\Rightarrow|x-9|+10\ge10\)
\(\Rightarrow A_{min}=10\)\(\Leftrightarrow|x-9|=0\Rightarrow x-9=0\)
\(\Rightarrow x=9\)
a) Ta có: \(\left(2x-4\right)^4\ge0\forall x\)
\(\Leftrightarrow\left(2x-4\right)^4+5\ge5\forall x\)
Dấu '=' xảy ra khi 2x-4=0
\(\Leftrightarrow2x=4\)
hay x=2
Vậy: Giá trị nhỏ nhất của biểu thức \(M=\left(2x-4\right)^2+5\) là 5 khi x=2
b) Ta có: \(\left|x+2\right|\ge0\forall x\)
\(\Leftrightarrow-\left|x+2\right|\le0\forall x\)
\(\Leftrightarrow\left|x+2\right|+10\le10\forall x\)
Dấu '=' xảy ra khi x+2=0
hay x=-2
Vậy: Giá trị lớn nhất của biểu thức \(N=10-\left|x+2\right|\) là 10 khi x=-2
sửa bài
Ta có : \(x+10\ge10\forall x\left(x\ge0\right)\)
\(\Rightarrow D=-\frac{10}{x+10}\ge-\frac{10}{10}=-1\)
Dấu ''='' xảy ra khi x = 0
Vậy GTNN của D bằng -1 tại x = 0
ĐK : x>=0 mới có GTNN nhé, hoặc có thể đề của bạn là x^2 ?
Ta có : \(x+10\ge10\forall x\left(x\ge0\right)\)
\(\Rightarrow D=\frac{-10}{x+10}\le-\frac{10}{10}=-1\)
Dấu ''='' xảy ra khi x = 0
Vậy GTNN của D bằng -1 tại x = 0