Tìm b nguyên dương biết nghịch đảo của nó lớn hơn \(\frac{1}{2}\). Trả lời: b =
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.\)Ta có:\(\frac{x}{y}+\frac{y}{x}\ge2\)
\(AM-GM:\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\left(đpcm\right)\)
\(b.\)Nếu x,y dương thì Áp dụng BĐT Cô-si ta có:\(\frac{3x}{y}+\frac{3y}{x}\ge2\sqrt{\frac{3x}{y}.\frac{3y}{x}}=6\)hay\(\frac{3x}{y}+\frac{3y}{x}\ge6\left(đpcm\right)\)
Nếu x,y âm ta có:\(\frac{3x}{y}+\frac{3y}{x}=\frac{3x^2}{xy}+\frac{3y^2}{xy}\ge2\sqrt{\frac{3x^2}{xy}.\frac{3y^2}{xy}}=6\left(đpcm\right)\)
a. Gọi phân số cần tìm là \(\frac{a}{b}\)
\(\Rightarrow\) Phân số nghịch đảo là \(\frac{b}{a}\)
Theo bài ra, ta có:
\(\frac{a}{b}+\frac{b}{a}\ge2\)
\(\Leftrightarrow\frac{a^2+b^2}{ab}\ge2\)
\(\Leftrightarrow a^2+b^2\ge2ab\)
\(\Leftrightarrow a^2+b^2-2ab\ge0\)
\(\Leftrightarrow a^2-ab+b^2-ab\ge0\)
\(\Leftrightarrow a\left(a-b\right)+b\left(b-a\right)\ge0\)
\(\Leftrightarrow a\left(a-b\right)-b\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(a-b\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\)
Vì (a-b)2 chắc chắn lớn hơn hoặc bằng 0
\(\Rightarrow\frac{a}{b}+\frac{b}{a}\ge2\)
Vậy tổng của một phân số dương với ghịch đảo của nó luôn lớn hơn hoặc bằng 2.
Câu 1 : phân số 33/39
Câu 2: phân số 2005/2807
Câu 3: phân số 1986/2000
Câu 4: các số nguyên là -1;1;-5. Tổng nghịch đảo là: -1+1-1/5=-1/5
a. Số 0 là số không có nghịch đảo
b. Gọi số cần tìm ấy là x
Nghịch đảo của nó là \(\dfrac{1}{x}\)
Ta sẽ có: \(x=\dfrac{1}{x}\)=> \(x^2=1\)=> \(x=\pm1\)
Số nghịch đảo \(\frac{a}{b}\) (b > 0) của b lớn hơn \(\frac{1}{2}\) thì là \(\frac{1}{1}\).
Vậy b bằng 1.
1/b>1/2 do vậy b<2 mà b ng,duong b=1