1,Tìm n \(\in\)Z sao cho 2n-1 \(⋮\)9-n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


ta co: 2n-3 chia het cho n+1
n+1 chia het cho n+1
=>2(n+1) chia het cho n+1
hay 2n+2 chia het cho n+1
=>(2n+2)-(2n-3) chia het cho n-1
5 chia het cho n-1
=> n-1 thuoc uoc cua 5 ={1;5;-1;-5}
=> n thuoc{2;6;0;-4}

\(\left(3n-4\right)⋮\left(2n-1\right)\Rightarrow n\in\left\{3\right\}\)


\(2n-3⋮n+1\)
\(\Rightarrow\left(2n+2\right)-2-3⋮n+1\)
\(\Rightarrow2\left(n+1\right)-5⋮n+1\)
\(2\left(n+1\right)⋮n+1\)
\(\Rightarrow-5⋮n+1\)
\(\Rightarrow\) \(n+1\inƯ\left(-5\right)\)
đến đây dễ r`, bn tự lm tiếp đi!
\(2n-3⋮n+1\)
\(\Rightarrow2n+2-5⋮n+1\)
mà \(2n+2⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\inƯ\left(5\right)\)
\(\Rightarrow n+1\in\left\{1;\left(-1\right);5;\left(-5\right)\right\}\)
\(\Rightarrow n\in\left\{0;\left(-2\right);\left(-6\right);4\right\}\)
vậy :n = 0
n = -2
n = -6
n = 4

a) \(a\left(b+1\right)=3\left(a;b\inℤ\right)\)
\(\Rightarrow a;\left(b+1\right)\in U\left(3\right)=\left\{-1;1;-3;3\right\}\)
\(\Rightarrow\left(a;b\right)\in\left\{\left(-1;-4\right);\left(1;2\right);\left(-3;-2\right);\left(3;0\right)\right\}\)
b) \(2n+7⋮n+1\left(n\inℤ\right)\)
\(\Rightarrow2n+7-2\left(n+1\right)⋮n+1\)
\(\Rightarrow2n+7-2n-2⋮n+1\)
\(\Rightarrow5⋮n+1\)
\(\Rightarrow n+1\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow n\in\left\{-2;0;-6;4\right\}\)
c) \(xy+x-y=6\left(x;y\inℤ\right)\)
\(\Rightarrow x\left(y+1\right)-y-1+1=6\)
\(\Rightarrow x\left(y+1\right)-\left(y+1\right)=5\)
\(\Rightarrow\left(x-1\right)\left(y+1\right)=5\)
\(\Rightarrow\left(x-1\right);\left(y+1\right)\in U\left(5\right)=\left\{-1;1;-5;5\right\}\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(-0;-6\right);\left(2;4\right);\left(-4;-2\right);\left(6;0\right)\right\}\)

Ta có: \(2n-3⋮n+1\)
\(\Leftrightarrow-5⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{0;-2;4;-6\right\}\)

`2n-3 vdots n+1`
`=>2n+2-5 vdots n+1`
`=>2(n+1)-5 vdots n+1`
`=>5 vdots n+1` do `2(n+1) vdots n+1`
`=>n+1 in Ư(5)={+-1,+-5}`
`=>n in {0,-2,4,-6}`
Vậy `n in {0,-2,4,-6}` thì `2n-3 vdots n+1`
Để \(2n-3⋮n+1\)
<=> \(2n-3-2\left(n+1\right)⋮n+1\)
<=> \(-5⋮n+1\)
<=> \(n+1\inƯ\left(5\right)\)
<=> \(n+1\in\left\{-5;-1;1;5\right\}\)
<=> \(n\in\left\{-6;-2;0;4\right\}\)

Tham khảo:
2n-3 chia hết cho n+1
=> 2n+2-5 chia hết cho n+1
=> 2(n+1)-5 chia hết cho n+1
Mà 2(n+1) chia hết cho n+1 => 5 chia hết cho n+1
=> n+1 thuộc Ư(5) ={1;-1;5;-5}
TH1: n+1=1 => n=0 thuộc Z
TH2: n+1=-1 => n=-2 thuộc Z
TH3: n+1=5 => n=4 thuộc Z
TH4: n+1=-5 => n=-6 thuộc Z
=> n thuộc {0;-2;4;6}
\(2n-1⋮9-n\)
\(\Rightarrow9\left(2n-1\right)⋮9-n\)
\(\Rightarrow18n-9⋮9-n\)
\(\Rightarrow\left(18n+9\right)-9⋮9-n\)
\(\Rightarrow2\left(9-n\right)-9⋮9-n\)
\(\Rightarrow-9⋮9-n\)
\(9-n\inƯ\left(-9\right)=\left\{-9;-1;1;9\right\}\)