1, CMR: 2n2 + 5n - 13 \(⋮\) n + 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1:
2n^2+5n-1 chia hết cho 2n-1
=>2n^2-n+6n-3+2 chia hết cho 2n-1
=>2n-1 thuộc {1;-1;2;-2}
mà n nguyên
nên n=1 hoặc n=0
2:
a: A=n(n+1)(n+2)
Vì n;n+1;n+2 là 3 số liên tiếp
nên A=n(n+1)(n+2) chia hết cho 3!=6
b: B=(2n-1)[(2n-1)^2-1]
=(2n-1)(2n-2)*2n
=4n(n-1)(2n-1)
Vì n;n-1 là hai số nguyên liên tiếp
nên n(n-1) chia hết cho 2
=>B chia hết cho 8
c: C=n^2+14n+49-n^2+10n-25=24n+24=24(n+1) chia hết cho 24
\(=\left(2n^2+5n\right)\left(2n^2+5n\right)+12\left(2n^2+5n\right)+36=\left(2n^2+5n\right)^2+2.\left(2n^2+5n\right).6+6^2=\left(2n^2+5n+6\right)^2\)
Ta có:
\(\frac{1}{1.6}+\frac{1}{6.11}+...+\frac{1}{\left(5n+1\right)\left(5n+6\right)}=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+...+\frac{1}{5n+1}-\frac{1}{5n+6}\right)\)
\(=\frac{1}{5}\left(\frac{1}{1}-\frac{1}{5n+6}\right)=\frac{1}{5}\left(\frac{5n+6}{5n+6}-\frac{1}{5n+6}\right)=\frac{1}{5}.\frac{5n+5}{5n+6}=\frac{1}{5}.\frac{5\left(n+1\right)}{5n+6}=\frac{5\left(n+1\right)}{5\left(5n+6\right)}=\frac{n+1}{5n+6}\)(ĐPCM)
bạn Phạm Thiết Tường ơi ch mình hỏi sao lại nhân \(\frac{1}{5}\)với \(\frac{1}{1}-\frac{1}{5n+6}\)vậy
Gọi A = 1/1.6 + 1/6.11 +...+ 1/(5n+1)(5n+6)
5A = 5/1.6 + 5/6.11 + ... + 5/(5n+1)(5n+6)
=1 - 1/6 + 1/6 - 1/11 + ... + 1/5n+1 - 1/5n+6
=1 - 1/5n+6 =5n+6/5n+6 - 1/5n+6=5n+5 /5n+6
â) Gọi \(d=ƯCLN\left(4n-13;5n-16\right)\left(d\in N\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-13⋮d\\5n-16⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20n-65⋮d\\20n-64⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(4n-13;5n-16\right)=1\)
\(\Leftrightarrow\) Phân số \(\dfrac{4n-13}{5n-16}\) tối giản với mọi n
b) Gọi \(d=ƯCLN\left(5n-13;3n-8\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}5n-13⋮d\\3n-8⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}15n-39⋮d\\15n-40⋮d\end{matrix}\right.\)
\(\Leftrightarrow1⋮d\)
Vì \(d\in N;1⋮d\Leftrightarrow d=1\)
\(\LeftrightarrowƯCLN\left(5n-13;3n-8\right)=1\)
\(\Leftrightarrow\) Phân số \(\dfrac{5n-13}{3n-8}\) tối giản với mọi n
a) \(\dfrac{4n-13}{5n-16}\)
Đặt \(d=ƯCLN\left(4n-13;5n-16\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}4n-13⋮d\\5n-16⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}5\left(4n-13\right)⋮d\\4\left(5n-16\right)⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}20n-65⋮d\\20n-64⋮d\end{matrix}\right.\)
\(\Leftrightarrow\left(20n-65\right)-\left(20n-64\right)⋮d\)
\(\Leftrightarrow20n-65-20n+64⋮d\)
\(\Leftrightarrow-1⋮d\)
\(\Leftrightarrow d=\left\{1;-1\right\}\)
Vậy phân số \(\dfrac{4n-13}{5n-16}\) là phân số tối giản.
\(2n^2+5n-13=2n^2+2n+3n+3-16⋮n+1\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;4;-4;8;-8;16;-16\right\}\)
hay \(n\in\left\{0;-2;1;-3;3;-5;7;-9;15;-17\right\}\)