TÌm m để p/trình vô nghiệm m(mx+1)=3(mx+1) với mọi \(x\in Z\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
m(mx+1)= 3(mx+1)
<=>m^2x+m=3mx+3
<=>m^2 - 3mx +m -3 = 0
co Δ = b^2 - 4ac
=\(\left(-3m\right)^2\) - 4 . ( m - 3) . (m^2)
= \(9m^2\) - \(12m^3\) + \(12m^2\)
= \(21m^2\) - \(12m^3\)
de pt vo nghiem thi Δ = 0
<=>\(21m^2\) - \(12m^3\) = 0
<=>\(7m^2\) - \(4m^3\) =0
<=>7m . ( m - \(\frac{4}{7}\) ) = 0
<=>\(\hept{\begin{cases}7m=0=>m=0\\m-\frac{4}{7}=0=>m=\frac{4}{7}\end{cases}}\)
vay voi m = { 0 , \(\frac{4}{7}\)} thi pt tren vo nghiem
Phương trình ax + b = 0 hoặc ax = b vô nghiệm khi a= 0 và b ≠ 0 .
Xét phương án C:
m m x - 1 = m 2 + 1 x - m ⇔ m 2 x = m 2 x + 1 - m
⇔ 0 x = 1 (vô lí) nên phương trình này vô nghiệm.
Chọn C.
1.
Nếu \(m=0\), \(f\left(x\right)=2x\)
\(\Rightarrow m=0\) không thỏa mãn
Nếu \(x\ne0\)
Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)
mx²+2(m-1)x+4 ≥0
bpt trên vô nghiệm <=>mx²+2(m-1)x+4 <0
a=m\(\ne0\)
\(\Delta'=\left(m-1\right)^2-m.4\)
\(=m^2-2m+1-4m\)
\(=m^2-6m+1\)
\(=\left(m-3-2\sqrt{2}\right)\left(m-3+2\sqrt{2}\right)\)
bpt vô nghiệm <=>\(\left\{{}\begin{matrix}a< 0\\\Delta'< 0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}m< 0\\\left(m-3-2\sqrt{2}\right)\left(m-3+2\sqrt{2}\right)< 0\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}m< 0\\3-2\sqrt{2}< m< 3+2\sqrt{2}\end{matrix}\right.\)
=> không có m để bất phương trình vô nghiệm
m=0 nha bạn!
1-1=0