K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2017

m=0 nha bạn!

7 tháng 3 2017

m(mx+1)= 3(mx+1)

<=>m^2x+m=3mx+3

<=>m^2 - 3mx +m -3 = 0

co  Δ = b^2 - 4ac 

        =\(\left(-3m\right)^2\) - 4 . ( m - 3) . (m^2)

        = \(9m^2\) -  \(12m^3\) + \(12m^2\)

        = \(21m^2\) - \(12m^3\)

        de pt vo nghiem thi  Δ = 0

                                     <=>\(21m^2\) - \(12m^3\) = 0

                                     <=>\(7m^2\)  - \(4m^3\)     =0

                                     <=>7m . ( m - \(\frac{4}{7}\) )      = 0

                                     <=>\(\hept{\begin{cases}7m=0=>m=0\\m-\frac{4}{7}=0=>m=\frac{4}{7}\end{cases}}\)

vay voi m = { 0 , \(\frac{4}{7}\)} thi pt tren vo nghiem

25 tháng 6 2019

Phương trình ax + b = 0 hoặc ax = b vô nghiệm khi a= 0 và b ≠ 0 .

Xét phương án C:

m m x - 1 = m 2 + 1 x - m ⇔ m 2 x = m 2 x + 1 - m

⇔ 0 x = 1   (vô lí) nên phương trình này vô nghiệm.

Chọn C.

13 tháng 11 2021

Đề thiếu rồi bạn

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<

7 tháng 1 2022

undefined

12 tháng 3 2021

1.

Nếu \(m=0\)\(f\left(x\right)=2x\)

\(\Rightarrow m=0\) không thỏa mãn

Nếu \(x\ne0\)

Yêu cầu bài toán thỏa mãn khi \(\left\{{}\begin{matrix}m< 0\\\Delta'=\left(m-1\right)^2-4m^2< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\end{matrix}\right.\Leftrightarrow m< -\dfrac{1}{3}\)

16 tháng 4 2021

2.

\(\dfrac{-x^2+2x-5}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow\dfrac{-\left(x-1\right)^2-4}{x^2-mx+1}\le0\forall x\)

\(\Leftrightarrow x^2-mx+1>0\forall x\)

\(\Leftrightarrow\Delta=m^2-4< 0\Leftrightarrow-2< m< 2\)

Kết luận: \(-2< m< 2\)

6 tháng 12 2021

\(\Delta=4\left(m+1\right)^2-4m\left(m+1\right)\\ =4\left(m^2+2m+1\right)-4m^2-4m\\ =4m^2+8m+4-4m^2-4m\\ =4m+4\)

Để pt vô nghiệm thì \(4m+4< 0\\ \Rightarrow m< -1\)

3 tháng 2 2022

mx²+2(m-1)x+4 ≥0

bpt trên vô nghiệm <=>mx²+2(m-1)x+4 <0

a=m\(\ne0\)

\(\Delta'=\left(m-1\right)^2-m.4\)

     \(=m^2-2m+1-4m\)

     \(=m^2-6m+1\)

     \(=\left(m-3-2\sqrt{2}\right)\left(m-3+2\sqrt{2}\right)\)

bpt vô nghiệm <=>\(\left\{{}\begin{matrix}a< 0\\\Delta'< 0\end{matrix}\right.\)

                        <=>\(\left\{{}\begin{matrix}m< 0\\\left(m-3-2\sqrt{2}\right)\left(m-3+2\sqrt{2}\right)< 0\end{matrix}\right.\)

                        <=>\(\left\{{}\begin{matrix}m< 0\\3-2\sqrt{2}< m< 3+2\sqrt{2}\end{matrix}\right.\)

                        => không có m để bất phương trình vô nghiệm