Tìm các số tự nhiên a,b biết:
phần a/2^n+124=5^b
phần b/10^n+168=b^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì 5b là số lẻ \(\forall b\in N\)
124 là số chẵn
=> 2a là số lẻ => a = 0
Thay a = 0 vào đề bài ta có: 20 + 124 = 5b
=> 1 + 124 = 5b
=> 5b = 125 = 53
=> b = 3
Vậy a = 0; b = 3
b) + Với a = 0, ta có: 100 + 168 = b2
=> 1 + 168 = b2
=> b2 = 169
Mà \(b\in N\) => b = 13
+ Với a khác 0 thì \(10^a⋮5\); 168 chia 5 dư 3
=> b2 chia 5 dư 3, vô lý vì số chính phương chia 5 chỉ có thể dư 0; 1; 4
Vậy a = 0; b = 13
xét a=0=>10a+168=1+168=169=132
=>a=0;b=2
xét a khác 0=>10a có tận cùng bằng 0
=>10a+168 có tận cùng bằng 8 không phải số chính phương
=>không có b
vậy a=0;b=2
Chia ra làm hai trường hợp
(+) TH1: a = 0
(+) TH2: a > 0 ( cái này laoij)
2a+124=5b
5b là số lẻ với b là số tự nhiên.
Vậy 2a + 124 là số lẻ.
Vậy 2a là số lẻ khi và chỉ khi a = 0.
20 + 124 = 5b
125 = 53 = 5b
Vậy a = 0 ; b = 3.
Nhận thấy
5^b tận cùng là 5
mà 2^a + 124 tận cùng cũng phải là 5
=> 2^a tận cùng là 1 mà 2^a tận cũng là số chẵn trừ số 0
=> a = 0
ta có
2^0 + 124 = 5^b
=> 125 -= 5^b
=> 5^3 = 5^b
=> b = 3
Vậy a = 0 ; b = 3 đúng nha
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0