Tìm x biết (x-3).(4-5x)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
|5\(x\) - 4| = |\(x+2\)|
\(\left[{}\begin{matrix}5x-4=x+2\\5x-4=-x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}4x=6\\6x=2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
vậy \(x\in\) { \(\dfrac{1}{3};\dfrac{3}{2}\)}
|2\(x\) - 3| - |3\(x\) + 2| = 0
|2\(x\) - 3| = | 3\(x\) + 2|
\(\left[{}\begin{matrix}2x-3=3x+2\\2x-3=-3x-2\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-5\\x=\dfrac{1}{5}\end{matrix}\right.\)
vậy \(x\in\){ -5; \(\dfrac{1}{5}\)}
Answer:
\(3x^2-4x=0\)
\(\Rightarrow x\left(3x-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{4}{3}\end{cases}}\)
\(\left(x^2-5x\right)+x-5=0\)
\(\Rightarrow x\left(x-5\right)+\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x+1=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}\)
\(x^2-5x+6=0\)
\(\Rightarrow x^2-2x-3x+6=0\)
\(\Rightarrow\left(x^2-2x\right)-\left(3x-6\right)=0\)
\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=2\\x=3\end{cases}}\)
\(5x\left(x-3\right)-x+3=0\)
\(\Rightarrow5x\left(x-3\right)-\left(x-3\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}5x-1=0\\x-3=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=3\end{cases}}\)
\(x^2-2x+5=0\)
\(\Rightarrow\left(x^2-2x+1\right)+4=0\)
\(\Rightarrow\left(x-1\right)^2=-4\) (Vô lý)
Vậy không có giá trị \(x\) thoả mãn
\(x^2+x-6=0\)
\(\Rightarrow x^2+3x-2x-6=0\)
\(\Rightarrow x.\left(x+3\right)-2\left(x+3\right)=0\)
\(\Rightarrow\left(x-2\right)\left(x+3\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}}\)
\(a,x+5x^2=0\\ \Rightarrow a,x\left(1+5x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=-\dfrac{1}{5}\end{matrix}\right.\\ b,\left(x+3\right)^2+\left(4+x\right)\left(4-x\right)=0\\ \Rightarrow x^2+6x+9+16-x^2=0\\ \Rightarrow6x+25=0\\ \Rightarrow6x=-25\\ \Rightarrow x=-\dfrac{25}{6}\)
\(c,5x\left(x-1\right)=x-1\\ \Rightarrow c,5x\left(x-1\right)-\left(x-1\right)\\ \Rightarrow\left(x-1\right)\left(5x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ d,x^2-2x-3=0\\ \Rightarrow\left(x^2-3x\right)+\left(x-3\right)=0\\ \Rightarrow x\left(x-3\right)+\left(x-3\right)=0\\ \Rightarrow\left(x+1\right)\left(x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)
(x - 4)(5x - 2) - 3(x - 4) = 0
=> (x - 4)(5x - 2 - 3) = 0
=> (x - 4)(5x - 5) = 0
=> (x - 4).5.(x - 1) = 0
\(\Rightarrow\orbr{\begin{cases}x-4=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=4\\x=1\end{cases}}}\)
vậy
a, x.( x - 2 ) + 2x - 4 = 0
<=> (x-2)(x+2)=0
<=> x=2 V x=-2
b, 5x.(x - 3 ) - x + 3 = 0
<=> (x-3)(5x-1)=0
<=> x=3 V x=1/5
a ) \(x.\left(x-2\right)+2x-4=0\)
\(\Leftrightarrow x^2-2x+2x-4=0\)
\(\Leftrightarrow x^2-4=0\)
\(\Leftrightarrow x^2=4\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-2\end{array}\right.\)
b ) \(5x.\left(x-3\right)-x+3=0\)
\(\Leftrightarrow5x.\left(x-3\right)+\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(5x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-3=0\\5x+1=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=3\\x=-\frac{1}{5}\end{array}\right.\)
Vậy ............
a)
(2x-1)2-(5x-5)2=0
<=>(2x-1-5x+5)(2x-1+5x-5)=0
<=>(-3x+4)(7x-6)=0
<=>\(\orbr{\begin{cases}-3x+4=0\\7x-6=0\end{cases}}\)
<=>\(\orbr{\begin{cases}-3x=-4\\7x=6\end{cases}}\)
<=>\(\orbr{\begin{cases}x=\frac{-4}{-3}=\frac{4}{3}\\x=\frac{6}{7}\end{cases}}\)
b)
(2x+1)2-4(x+3)2=0
<=>(2x+1)2-[2(x+3)]2=0
<=>(2x+1)2-(2x+6)2=0
<=>(2x+1-2x-6)(2x+1+2x+6)=0
<=>-5(4x+7)=0
<=>4x+7=0
<=>4x=-7
<=>\(x=-\frac{7}{4}\)
x^3+5x^2+8x+4=0
x^3+x^2+4x^2+4x+4x+4=0
x^2(x+1)+4x(x+1)+4(x+1)=0
(x+1)(x^2+4x+4)=0
x+1=0 =>x=-1
x^2+4x+4=0
x^2+2x+2x+4=0
x(x+2)+2(x+2)=0
(x+2)^2=0
x=-2
Vậy x=-2,x=-1
Ta có:
TH1: x-3=0
x =0+3=3
TH2: 4-5x=0
5x=4-0
5x=4
Đoạn này nếu muốn giải thêm thì:
x=4/5
x=0.8
Hoặc:
5x=4( loại)
Ta có:
TH1: x-3=0
x =0+3=3
TH2: 4-5x=0
5x=4-0
5x=4
Đoạn này nếu muốn giải thêm thì:
x=4/5
x=0.8
Hoặc:
5x=4( loại)