Chứng minh bất đẳng thức : x2+y2-xy\(\ge\)x+y-1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
Nhân hai vế của đẳng thức với 2 :
2x^2 + 2y^2 - 2xy = (x^2 - 2xy + y^2)+y^2 + x^2 = (x - y)^2 + x^2 + y^2 >= 0
Đẳng thức xảy ra khi x = y = 0
Cả hai vế của đẳng thức nhân 2
2x2 + 2y2 - 2xy = ( x2 - 2xy + y2 ) + y2 + x2 = ( x - y )2 + x2 + y2 \(\ge\)0
Vậy đẳng thức xảy ra khi x = y = 0
k cho mình nha mọi người
Dễ thấy:
\(VT\ge\left(x+y\right)^2+1-\dfrac{\left(x+y\right)^2}{4}=\dfrac{3\left(x+y\right)^2}{4}+1\)
Áp dụng Cô-si:
\(\dfrac{3\left(x+y\right)^2}{4}+1\ge2\sqrt{\dfrac{3\left(x+y\right)^2}{4}.1}=\sqrt{3}\left|x+y\right|\ge\sqrt{3}\left(x+y\right)\)
Do đó:
\(\left(x+y\right)^2+1-xy\ge\sqrt{3}\left(x+y\right),\forall x,y\in R\)
CMR : a) Có thể tìm được số có dạng 199119911991...19910...0 chia hết cho 1992
Help
(x-y)^2 >= 0 ; (y-z)^2 >= 0 ; (x-z)^2 >= 0
=>(x-y)^2+(y-z)^2+(x-z)^2 >= 0
=>2x^2+2y^2+2z^2-2xy-2yz-2xz >= 0
=>2x^2+2y^2+2z^2 >= 2xy+2yz+2xz
=>x^2+y^2+z^2 >= xy+yz+xz
nhần đổi của về rùi chuyển vế bạn sẽ dc (x-y)^2 + (y-z)^2 + (Z-X) ^2 >=0 dáu = xảy ra khi x=y=z , xong nhá
Lớp 8 một phát ra luôn:
lớp 7 hơi phức tạp:
\(\Leftrightarrow x^2+y^2-xy-x-y+1\ge0\)
\(\Leftrightarrow2x^2+2y^2-2xy-2x-2y+2\ge0\)
\(\Leftrightarrow\left(x^2-xy\right)+\left(y^2-xy\right)+\left(x^2-x\right)+\left(y^2-y\right)-\left(x-1\right)-\left(y-1\right)\ge0\)
\(\Leftrightarrow\left[x\left(x-y\right)+y\left(y-x\right)\right]+\left[x\left(x-1\right)-\left(x-1\right)\right]+\left[y\left(y-1\right)-\left(y-1\right)\right]\ge0\)\(\Leftrightarrow\left[\left(x-y\right)\left(x-y\right)\right]+\left[\left(x-1\right)\left(x-1\right)\right]+\left[\left(y-1\right)\left(y-1\right)\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x-1\right)^2+\left(y-1\right)^2\ge0\) đẳng thức khi x=y =1.
Mọi phép biến đổi là tương đương => đccm
đẳng thức khi x=y =1.
có cho số dương hay j ko