K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 1 2017

\(\frac{15}{a}=\frac{\left(a-1\right)}{28}\)

\(\Rightarrow a\left(a-1\right)=15.28\)

\(\Rightarrow a\left(a-1\right)=420=21.20\)

Vậy : a = 21

23 tháng 1 2017

mk xin lỗi, bn Hạo giải đúng rồi nên mk thôi, bn xem cách làm của bn ấy nhé Đỗ Thị Khánh Linh

27 tháng 2 2017

Đây nhé bạn:

https://hoc24.vn/hoi-dap/question/172644.html

27 tháng 2 2017

\(\frac{15}{a}=\frac{a-1}{28}\)

\(\Rightarrow15.28=\left(a-1\right)a\)

\(\Rightarrow420=\left(a-1\right)a\)

\(\Rightarrow20.21=\left(a-1\right)a\)

\(\Rightarrow a=21\)

4 tháng 3 2019

nhầm 1 

17 tháng 4 2020

\(\frac{a}{b}=\frac{21}{28}\)=> \(\frac{a}{b}=\frac{3}{4}\)=> \(\frac{a}{b}=\frac{3k}{4k}\)\(k\inℤ,k\ne0\))

ƯCLN(a, b) = 15 => ƯCLN(3k, 4k) = 15

Mà ƯCLN(3k, 4k) = k

=> k = 15

=> a = 3 . 15 = 45

=> b = 4 . 15 = 60

=> \(\frac{a}{b}=\frac{45}{60}\)

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

25 tháng 9 2019

trả lời lẹ cho tui cấy

8 tháng 7 2020

\(P=\frac{16a}{3}+\frac{1}{b}+\frac{4}{4c}\ge\frac{16a}{9}+\frac{16a}{9}+\frac{16a}{9}+\frac{9}{b+4c}\ge4\sqrt[4]{\frac{4096}{81}.\frac{a^3}{b+4c}}=\frac{32}{3}\)

"=" \(\Leftrightarrow\)\(\left(a;b;c\right)=\left(\frac{3}{2};\frac{9}{8};\frac{9}{16}\right)\)