Tìm số a>0 thỏa mãn \(\frac{15}{a}=\frac{a-1}{28}\) a=.....
Giúp với!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{15}{a}=\frac{a-1}{28}\)
\(\Rightarrow15.28=\left(a-1\right)a\)
\(\Rightarrow420=\left(a-1\right)a\)
\(\Rightarrow20.21=\left(a-1\right)a\)
\(\Rightarrow a=21\)
\(\frac{a}{b}=\frac{21}{28}\)=> \(\frac{a}{b}=\frac{3}{4}\)=> \(\frac{a}{b}=\frac{3k}{4k}\)( \(k\inℤ,k\ne0\))
ƯCLN(a, b) = 15 => ƯCLN(3k, 4k) = 15
Mà ƯCLN(3k, 4k) = k
=> k = 15
=> a = 3 . 15 = 45
=> b = 4 . 15 = 60
=> \(\frac{a}{b}=\frac{45}{60}\)
By Titu's Lemma we easy have:
\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)
\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)
\(=\frac{17}{4}\)
Mk xin b2 nha!
\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)
\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)
\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)
Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)
\(P=\frac{16a}{3}+\frac{1}{b}+\frac{4}{4c}\ge\frac{16a}{9}+\frac{16a}{9}+\frac{16a}{9}+\frac{9}{b+4c}\ge4\sqrt[4]{\frac{4096}{81}.\frac{a^3}{b+4c}}=\frac{32}{3}\)
"=" \(\Leftrightarrow\)\(\left(a;b;c\right)=\left(\frac{3}{2};\frac{9}{8};\frac{9}{16}\right)\)
\(\frac{15}{a}=\frac{\left(a-1\right)}{28}\)
\(\Rightarrow a\left(a-1\right)=15.28\)
\(\Rightarrow a\left(a-1\right)=420=21.20\)
Vậy : a = 21
mk xin lỗi, bn Hạo giải đúng rồi nên mk thôi, bn xem cách làm của bn ấy nhé Đỗ Thị Khánh Linh