K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Giải thích các bước giải:

A=2xx2+1

GTN

⇒A=2xx2+1+1−1

=2x+x2+1x2+1−1

=(x+1)2x2+1−1

Vì (x+1)2x2+1≥0(x+1)2x2+1≥0 

⇒(x+1)2x2+1−1≥−1

⇒MinA=−1

Dấu "=" xảy ra khi : x-1=−1

GTLN

⇒A=2xx2+1+1−1

=2x−x2−1x2+1+1

=−(x−1)2x2+1−1

Vì −(x+1)2x2+1≤0-(x+1)2x2+1≤0 

⇒(x+1)2x2+1+1≤1

⇒MaxA=1

Dấu "=" xảy ra khi : x=1

chúc bạn học tốt nha

 Tìm điều kiện xác định :

x2 + x + 1 = (x2 + x + ¼) + ¾ = (x + ½)2 + ¾ > 0 với mọi x ∈ R.

Do đó x2 + x + 1 ≠ 0 với mọi x ∈ R.

x3 – 1 ≠ 0 ⇔ (x – 1)(x2 + x + 1) ≠ 0 ⇔ x – 1 ≠ 0 ⇔ x ≠ 1.

Vậy điều kiện xác định của phương trình là x ≠ 1.

+ Giải phương trình:

Giải bài 31 trang 23 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇒ x2 + x + 1 – 3x2 = 2x(x – 1)

⇔ -2x2 + x + 1 = 2x2 – 2x

⇔ - 4x2 + 3x + 1 = 0

⇔ - 4x2 + 4x - x + 1 = 0

⇔ - 4x(x – 1) – ( x – 1) = 0

⇔ (- 4x - 1)(x – 1) = 0

⇔ - 4x - 1 = 0 hoặc x – 1 = 0

+) Nếu - 4x - 1 = 0 ⇔ - 4x = 1 ⇔ x = -1/4 (thỏa mãn đkxđ)

+) Nếu x – 1 = 0 ⇔ x = 1 (không thỏa mãn đkxđ).

Vậy phương trình có tập nghiệm S = {-1/4}.

NV
7 tháng 6 2020

\(C=\frac{4x^2+2x-2}{2\left(x^2-2x+2\right)}=\frac{9\left(x^2-2x+2\right)-5x^2+20x-20}{2\left(x^2-2x+2\right)}=\frac{9}{2}-\frac{5\left(x-2\right)^2}{2\left(x-1\right)^2+2}\le\frac{9}{2}\)

\(C_{max}=\frac{9}{2}\) khi \(x=2\)

\(C=\frac{4x^2+2x-2}{2\left(x^2-2x+2\right)}=\frac{-\left(x^2-2x+2\right)+5x^2}{2\left(x^2-2x+2\right)}=-\frac{1}{2}+\frac{5x^2}{2\left(x-1\right)^2+2}\ge-\frac{1}{2}\)

\(C_{min}=-\frac{1}{2}\) khi \(x=0\)

Câu D bạn coi lại đềm kết quả rất xấu: \(\frac{3-\sqrt{17}}{12}\le D\le\frac{3+\sqrt{17}}{12}\)

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

$A=2x-\sqrt{x}=2(x-\frac{1}{2}\sqrt{x}+\frac{1}{4^2})-\frac{1}{8}$

$=2(\sqrt{x}-\frac{1}{4})^2-\frac{1}{8}$

$\geq \frac{-1}{8}$

Vậy $A_{\min}=-\frac{1}{8}$. Giá trị này đạt tại $x=\frac{1}{16}$

 

AH
Akai Haruma
Giáo viên
4 tháng 7 2021

$B=x+\sqrt{x}$

Vì $x\geq 0$ nên $B\geq 0+\sqrt{0}=0$

Vậy $B_{\min}=0$. Giá trị này đạt tại $x=0$

 

NV
21 tháng 1 2024

\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)

\(P_{max}=\dfrac{1}{5}\) khi \(x+1=0\Rightarrow x=-1\)

\(Q=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4\left(x+1\right)^2}=\dfrac{3\left(x^2+2x+1\right)+x^2-2x+1}{4\left(x+1\right)^2}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4\left(x+1\right)^2}\)

\(Q_{min}=\dfrac{3}{4}\) khi \(x-1=0\Rightarrow x=1\)

1: \(x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5>=5\forall x\)

=>\(P=\dfrac{1}{x^2+2x+6}< =\dfrac{1}{5}\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1