So sánh: \(\dfrac{x-y}{x+y}\) và \(\dfrac{x^2-y^2}{x^2+xy+y^2}\) với x>y>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
theo đầu bài ta có\(\dfrac{x^2+y^2}{xy}=\dfrac{10}{3}\)=>\(3x^2+3y^2=10xy\)
A=\(\dfrac{x-y}{x+y}\)
=>\(A^2=\left(\dfrac{x-y}{x+y}\right)^2=\dfrac{x^2-2xy+y^2}{x^2+2xy+y^2}=\dfrac{3x^2-6xy+3y^2}{3x^2+6xy+3y^2}=\dfrac{10xy-6xy}{10xy+6xy}=\dfrac{4xy}{16xy}=\dfrac{1}{4}\)
=>A=\(\sqrt{\dfrac{1}{4}}=\dfrac{-1}{2}hoặc\sqrt{\dfrac{1}{4}}=\dfrac{1}{2}\) (cộng trừ căn 1/4 nhé)
vì y>x>0=> A=-1/2
a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)
b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)
c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
Với x,y,z dương
Ta có:(x-y)2\(\ge0\forall x;y\)
=>x2+y2\(\ge\)2xy
Dấu = xảy ra khi x=y
Tương tự y2+z2\(\ge\)2yz
z2+x2\(\ge\)2zx
Cộng vế với vế 3 BĐT =>2(x2+y2+z2)\(\ge\)2(xy+yz+zx)
<=>x2+y2+z2\(\ge\)xy+yz+zx
<=>\(\dfrac{3}{xy+yz+zx}\ge\dfrac{3}{x^2+y^2+z^2}\)
Dấu = xảy ra khi và chỉ khi x=y=z
=>\(\dfrac{3}{xy+yz+zx}+\dfrac{2}{x^2+y^2+z^2}\ge\dfrac{5}{x^2+y^2+z^2}\)
Áp dụng BĐT bunhiacopski:
\(\left(x^2+y^2+z^2\right)\left(\dfrac{1}{3^2}+\dfrac{1}{3^2}+\dfrac{1}{3^3}\right)\le\left(\dfrac{x+y+z}{3}\right)^2=\dfrac{1}{3^2}=\dfrac{1}{9}\)(Do x+y+z=1)
Dấu = xảy ra khi và chỉ khi \(\dfrac{x}{3}=\dfrac{y}{3}=\dfrac{z}{3}\)<=>x=y=z
=>\(\dfrac{5}{x^2+y^2+z^2}=\dfrac{5}{3\cdot\left(x^2+y^2+z^2\right)\left(\dfrac{1}{3^2}+\dfrac{1}{3^2}+\dfrac{1}{3^2}\right)}\ge\dfrac{5}{3\cdot\dfrac{1}{9}}=15\)
=>\(\dfrac{3}{xy+yz+zx}+\dfrac{2}{x^2+y^2+z^2}\ge15\)(đpcm)
Dấu = xảy ra khi \(\left\{{}\begin{matrix}x=y=z\\z+y+z=1\end{matrix}\right.\)<=>x=y=z=\(\dfrac{1}{3}\)
Với \(x=y=2\) thì \(Q=\dfrac{10}{3}\)
Ta sẽ chứng minh \(\dfrac{10}{3}\) là GTNN của \(Q\)
Thật vậy: \(\dfrac{\left(x+y+2\right)^2}{xy+2\left(x+y\right)}+\dfrac{xy+2\left(x+y\right)}{\left(x+y+2\right)^2}\ge\dfrac{10}{3}\)
\(\Leftrightarrow\dfrac{\left(x^2-xy-2x+y^2-2y+4\right)\left(3x^2+5xy+10x+3y^2+10y+12\right)}{3\left(x+y+2\right)^2\left(xy+2x+2y\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(\left(2x-y-2\right)^2+3\left(y-2\right)^2\right)\left(3x^2+5xy+10x+3y^2+10y+12\right)}{12\left(x+y+2\right)^2\left(xy+2x+2y\right)}\ge0\)
BĐT cuối đúng với \(x;y>0\)
Vậy \(Q_{Min}=\dfrac{10}{3}\Leftrightarrow x=y=2\)
Quỳnh Hoa Lenka: Cách của mình đúng và được chấp nhận khi thi nhé :) cho nên mình cũng ko đòi hòi 1 lời giải nào hơn
(Vì x > 0 nên |x| = x; y2 > 0 với mọi y ≠ 0)
(Vì x2 ≥ 0 với mọi x; và vì y < 0 nên |2y| = – 2y)
(Vì x < 0 nên |5x| = – 5x; y > 0 nên |y3| = y3)
(Vì x2y4 = (xy2)2 > 0 với mọi x ≠ 0, y ≠ 0)
a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{6}\)
\(=\dfrac{1}{6}\sqrt{6}\)
b: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
\(A=\left(\dfrac{4\sqrt{xy}+x-2\sqrt{xy}+y}{2\left(x-y\right)}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\left(x-y\right)}\cdot\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
\(=\dfrac{\sqrt{x}-\sqrt{y}}{\sqrt{x}-\sqrt{y}}=1\)
Áp dụng BĐT Cô si cho 2 số dương a,b ta có \(\dfrac{a+b}{2}\ge\sqrt{ab}\)
\(\dfrac{1}{a}+\dfrac{1}{b}\ge2.\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}=>\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge2\sqrt{ab}.2\sqrt{\dfrac{1}{a}.\dfrac{1}{b}}\)
suy ra \(\left(a+b\right)\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\ge4\Rightarrow\dfrac{1}{a}+\dfrac{1}{b}\ge\dfrac{4}{a+b}\).Áp dụng vào bài toán ta có :\(\dfrac{1}{x^2+xy}+\dfrac{1}{y^2+xy}\ge\dfrac{4}{x^2+xy+y^2+xy}=\dfrac{4}{\left(x+y\right)^2}\ge4\) (Do \(x+y\le1\))