Tìm 2 chữ số tận cùng của \(7^{2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta có \(7^{99}=7^{96}.7^3=7^{4.24}.343\)
Mà \(7^{4k}\left(k\in N\right)\)luôn tận cùng bằng 1
\(\Rightarrow7^{99}=....1\times343=.....3\)
Vậy 799 có chữ số tận cùng là 3
b)ta có \(4^{2k+1}\left(k\in N\right)\)luôn tận cùng bằng 4 ( 2k + 1 là số mũ lẻ)
Mà 567 lại là số lẻ
Nên \(4^{567}=......4\)
Vậy 4567 có chữ số tận cùng là 4
\(7^{99}\)
Ta tìm số dư phép 99 chia hết cho 4:
\(9^9-1=\left(9-1\right).\left(9^8+9^7+...+9+1\right)⋮4\)
\(\Rightarrow99=4k+1\left(k\in N\right)\Rightarrow7^{99}=7^{4k+1}=7^{4k.7}\)
Do 74k có chữ số tận cùng là 1(theo tính chất 1c)=>799 có chữ số tận cùng là 7.
\(4^{567}\)
Ta có \(5^{67}-1⋮4\Rightarrow5^{67}=4k+1\left(k\in N\right)\)
\(\Rightarrow4^{567}=4^{4k+1}=4^{4k}.4\),theo tính chất 1d,44k có chữ số tận cùng là 6 nên 4567 có chữ số tận cùng là 4.
2 , \(7^{1990}=7^{1988}\cdot7^2=\left(7^4\right)^{497}\cdot7^2\)
vì 7^4 có số tận cùng là 1 suy ra (7^4)^497 có số tận cùng là 1
7^2=49 nên có số tận cùng là 9
suy ra \(\left(7^4\right)^{497}\cdot7^2\)có số tận cùng là \(1.9=9\)
vậy 7^1990 có số tận cùng là 9
3A=3^2+3^3+3^4+...+3^97.3A-A=(3^2+3^3+3^4+...+3^97)-(3+3^2+3^3+...+3^96).2A=3^2+3^3+3^4+...+3^97-3-3^2-3^3-3^96.2A=3^97-3.Ta có :3^97=(3^4)tất cả ^24+3=...1+3.Ta qua lại:...1+3-3=...1 .Vậy chữ số tận cùng là 1
43 nha bạn
sao bạn biết vậy?