A=3+3^2+3^3+3^4+...+3^20 ai giải giúp mình với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tính tổng á :
\(A=3+3^2+3^3+3^4+...+3^{20}.\)
\(\Rightarrow3A=3^2+3^3+3^4+...3^{20}+3^{21}\)
\(\Rightarrow3A-A=\left(3^2+3^3+..+3^{21}\right)-\left(3+3^2+....+3^{20}\right)\)
\(\Rightarrow2A=3^{21}-1\)
\(\Rightarrow A=\frac{3^{21}-1}{2}\)
Bài 20:
a) \(\sqrt{9-4\sqrt{5}}\cdot\sqrt{9+4\sqrt{5}}=\sqrt{81-80}=1\)
b) \(\left(2\sqrt{2}-6\right)\cdot\sqrt{11+6\sqrt{2}}=2\left(\sqrt{2}-3\right)\left(3+\sqrt{2}\right)\)
\(=2\left(2-9\right)=2\cdot\left(-7\right)=-14\)
c: \(\sqrt{2}\cdot\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}+1\right)\)
\(=\left(\sqrt{3}-1\right)\left(\sqrt{3}+1\right)\)
=2
d) \(\sqrt{2-\sqrt{3}}\cdot\left(\sqrt{6}-\sqrt{2}\right)\left(2+\sqrt{3}\right)\)
\(=\sqrt{4-2\sqrt{3}}\cdot\left(\sqrt{3}-1\right)\left(2+\sqrt{3}\right)\)
\(=\left(4-2\sqrt{3}\right)\left(2+\sqrt{3}\right)\)
\(=8+4\sqrt{3}-4\sqrt{3}-6\)
=2
A=3+3/2+3/22+...+3/2a nên:
=> 2A = 6+3+3/2+3/22 +...+3/2a-1
=> A= 6 - 3/2a ( lấy 2A -A )
Vậy A=6-3/2a
A = 1+3+32+33+....+320
3A = 3+32+33+34+.....+321
2A = 3A - A = 321 - 1
=> A = \(\frac{3^{21}-1}{2}\)
\(M=1+\frac{1}{3}-\frac{1}{3^2}+\frac{1}{3^3}-\frac{1}{3^4}+......+\frac{1}{3^{19}}-\frac{1}{3^{20}}\)
\(\Rightarrow\frac{1}{3}M=\frac{1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+\frac{1}{3^4}-\frac{1}{3^5}+.......+\frac{1}{3^{20}}-\frac{1}{3^{21}}\)
\(\Rightarrow\frac{1}{3}M+M=1+\frac{1}{3}+\frac{1}{3}-\frac{1}{3^{21}}\)
\(\Rightarrow\frac{4}{3}M=\frac{5}{3}-\frac{1}{3^{21}}\)\(\Rightarrow M=\frac{\frac{5}{3}-\frac{1}{3^{31}}}{\frac{4}{3}}\)
A = 3 + 32 + 33 + 34 + ... + 320
3A = 32 + 33 + 34 + 35 + ... + 321
3A - A = (32 + 33 + 34 + 35 + ... + 321) - (3 + 32 + 33 + 34 + ... + 320)
2A = 321 - 3
A = \(\frac{3^{21}-3}{2}\)