Nếu \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b}\) với \(\left(a,b\ne0;a\ne-b\right)\)
Tính \(\frac{b}{a}+\frac{a}{b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vô đây mà xem ; /hoi-dap/question/125436.html?pos=554506
\(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=\sqrt{\left(\frac{1}{a}+\frac{1}{b}\right)^2+\frac{1}{\left(a+b\right)^2}-\frac{2}{ab}}\)
\(=\sqrt{\left(\frac{a+b}{ab}\right)^2+\frac{1}{\left(a+b\right)^2}-\frac{2\left(a+b\right)}{ab}.\frac{1}{a+b}}\)
\(=\sqrt{\left(\frac{a+b}{ab}-\frac{1}{a+b}\right)^2}=\left|\frac{1}{a}+\frac{1}{b}-\frac{1}{a+b}\right|\)
theo bài ra ta có:
\(\frac{1}{c}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
\(\Rightarrow\frac{1}{c}=\frac{1}{2}\left(\frac{b}{ab}+\frac{a}{ab}\right)\\ \Rightarrow\frac{1}{c}=\frac{1}{2}.\frac{a+b}{ab}\\ \Rightarrow\frac{1}{c}=\frac{a+b}{2ab}\)
=> 2ab = c(a + b)
=> ab + ab = ca + cb
=> ab - cb = ca - ab
=> b( a - c ) = a( c - b )
=> \(\frac{a}{b}=\frac{a-c}{c-b}\left(đpcm\right)\)
Từ \(\frac{1}{a}+\frac{1}{b}=\frac{1}{a+b}\Rightarrow\frac{b}{ab}+\frac{a}{ab}=\frac{1}{a+b}\)
\(\Rightarrow\frac{a+b}{ab}=\frac{1}{a+b}\Rightarrow\left(a+b\right)^2=ab\)
\(\Rightarrow a^2+2ab+b^2=ab\Rightarrow a^2+ab+b^2=0\)
\(\Rightarrow a^2+b^2=-ab\). Lại có \(\frac{b}{a}+\frac{a}{b}=\frac{b^2}{ab}+\frac{a^2}{ab}=\frac{a^2+b^2}{ab}=\frac{-ab}{ab}=-1\)