Tìm x, biết: /x2 + /x - 1/ / = x2 + 2
!! Dấu " / " là dấu giá trị tuyệt đối !!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho phương trình: x^2 - 2mx + 2(m - 2) = 0. Tìm m để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
đen ta'=m^2-2m+2
đen ta'=(m-1)^2+1
suy ra phương trình luôn có 2 nghiệm phân biệt
để phương trình có hai nghiệm trái dấu và nghiệm âm có giá trị tuyệt đối lớn hơn nghiệm dương
khi và chỉ khi P<0 và S#0
suy ra 2(m-2)<0 và 2m#0
suy ra m<2 và m#0
Pt có 2 nghiệm trái dấu khi: \(1.\left(m+4\right)< 0\Leftrightarrow m< -4\)
Đồng thời nghiệm âm có giá trị tuyệt đối nhỏ hơn nghiệm dương \(\Leftrightarrow x_1+x_2>0\)
\(\Leftrightarrow m+1>0\Rightarrow m>-1\)
\(\Rightarrow\left\{{}\begin{matrix}m< -4\\m>-1\end{matrix}\right.\) (vô lý)
Vậy không tồn tại m thỏa mãn yêu cầu đề bài
Với x>=100
=> |x-1|+|x-2|+....+|x-100|=x-1+x-2+....+x-100=100x-5050
Với x<100 => |x-1|+|x-2|+|x-3|+.....+|x-100|=-x+1+(-x)+2+....+(-x)+100=-100x+5050
\(\left|x\right|>4\)
\(\Rightarrow\left|x\right|=\left\{5;6;7;.....\right\}\)
\(\Rightarrow x=\left\{\pm5;\pm6;\pm7;........\right\}\)
Vậy .........
Trả lời :
| x | > 4
=> x \(\in\){ \(\pm5\); \(\pm6\); \(\pm7\);... }
Vậy :...
Nhắc lại lý thuyết:\(\left|a\right|\ge0\forall a\rightarrow\) \(\left|a\right|=\left[\begin{matrix}\left\{\begin{matrix}a\\a\ge0\end{matrix}\right.\\\left\{\begin{matrix}-a\\a< 0\end{matrix}\right.\end{matrix}\right.\)(*)
\(\left|x^2+\left|x-1\right|\right|=x^2+2\)
ta có: \(\left\{\begin{matrix}\left|x+1\right|\ge0\forall x\\x^2\ge0\forall x\end{matrix}\right.\)\(\Rightarrow x^2+\left|x-1\right|\ge0\forall x\) {tổng hai số không âm, không thể là số âm.
Theo (*) \(\left|x^2+\left|x-1\right|\right|=x^2+\left|x-1\right|\) bỏ được 1 cái trị tuyệt đối.
Phương trình đầu tương đương
\(x^2+\left|x-1\right|=x^2+2\)
\(\left|x-1\right|=2\) {hai vế cùng có x^2=> bỏ đi thôi}
Theo (*) \(\Leftrightarrow\left[\begin{matrix}\left\{\begin{matrix}x-1\ge0\\x-1=2\end{matrix}\right.\\\left\{\begin{matrix}x-1< 0\\-\left(x-1\right)=2\end{matrix}\right.\end{matrix}\right.\) {ở đây a=(x-1)}
\(\left[\begin{matrix}x-1=2\Rightarrow x=3>1\\-\left(x-1\right)=2\Rightarrow x=-1< 1\end{matrix}\right.\) Vậy x={-1,3} là nghiệm
{phần -(x-1) =2 mình cố tình để cho giống (*) cho bạn dẽ hiểu thực chất khi làm bài để luôn (x-1)=-2 "nhân hai vế với (-1)"
Viết gọn lại: \(\left|x-1\right|=\pm2\) ok hy vọng giúp được bạn hiểu phần nào về cái gọi là trị tuyệt đối!
Vậy x={-1,3} là nghiệm
Viết như thế này thì mình bó tay