tìm số tự nhiên a và b chia cho m có cùng 1 số dư a >= b chứng minh rằng ( a - b ) chia hết cho m
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
MÌNH GIÚP BẠN NÈ
Nếu a mà lớn hơn b hoặc bằng b thì a là số bị chia b là số chia
Theo dấu hiệu chia hết thì nếu a chia hết cho m , b chia hết cho m thì , [a-b] hoặc [a+b] đều chia hết cho m
Nhưng theo công thức [a-b]:m là phải có 2 số cùng chia hết cho m
Nhưng đây lại có 2 số a và b cùng không chia hết cho m nên ta cũng không thể biết chính xác là a-b có thể chia hết cho m hay không
Nên a-b có khả năng chia hết cho m mà cũng không có khả năng vì không có con số chính xác để tính được
Nên a-b có khả năng chia hết cho m
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n b=m.h+n
=>a‐b=m.k+n‐﴾m.h+n﴿
=m.k+n‐m.h‐n
=﴾m.k‐m.h﴿+﴾n‐n﴿
=m.﴾k‐h﴿ chia hết cho m
=>a‐b chia hết cho m
=>ĐPCM
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n
b=m.h+n
=>a-b=m.k+n-(m.h+n)=m.k+n-m.h-n=(m.k-m.h)+(n-n)=m.(k-h) chia hết cho m
=>a-b chia hết cho m
=>ĐPCM
Gọi số dư của a và b khi chia cho m là n.
Ta có: a=m.k+ n
b=m.h+n
=>a-b=m.k+n-(m.h+n)=m.k+n-m.h-n=(m.k-m.h)+(n-n)=m.(k-h) chia hết cho m
=>a-b chia hết cho m
=>ĐPCM
Gọi a=m.k+r ; b=m.h+r (k và h là thương của a và b cho m;n là số dư,r\(\ge0\)
=>a-b=(m.k+r)-(m.h+r)
=m.k-m.h
Vì m.k và m.h đều chia hết cho m.
=>a-b chia hết cho m(Đpcm)
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự