K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2021

\(-3x^2-9x+12=3\Leftrightarrow-3x^2-9x+9=0\)

\(\Leftrightarrow-3\left(x^2+3x-3\right)=0\)

\(\Leftrightarrow x^2+3x-3=0\Leftrightarrow x^2+2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}-3=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\frac{21}{4}=0\Leftrightarrow\left(x+\frac{3}{2}\right)^2-\left(\frac{\sqrt{21}}{2}\right)^2=0\)

\(\Leftrightarrow\left(x+\frac{3}{2}-\frac{\sqrt{21}}{2}\right)\left(x+\frac{3}{2}+\frac{\sqrt{21}}{2}\right)=0\)

\(\Leftrightarrow\left(x+\frac{3-\sqrt{21}}{2}\right)\left(x+\frac{3+\sqrt{21}}{2}\right)=0\Leftrightarrow x=-\frac{3\pm\sqrt{21}}{2}\)

12 tháng 2 2018

a)    \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)

\(\Leftrightarrow\)\(2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\)\(\left(3x+1\right)\left[2\left(3x+1\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\)\(\left(3x+1\right)\left(6x+2-x+2\right)=0\)

\(\Leftrightarrow\)\(\left(3x+1\right)\left(5x+4\right)=0\)

đến đây tự lm nha

b)   \(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)    (1)

ĐKXĐ:    \(x\ne\pm\frac{1}{3}\)

\(\left(1\right)\)\(\Leftrightarrow\)\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2}{\left(1+3x\right)\left(1-3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)

\(\Rightarrow\)\(\left(1-3x\right)^2-\left(1+3x\right)^2=12\)

\(\Leftrightarrow\)\(\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)

\(\Leftrightarrow\)\(-12x=12\)

\(\Leftrightarrow\)\(x=-1\)   (t/m ĐKXĐ)

Vậy....

12 tháng 2 2018

a) \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)

\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left[2\left(3x+1\right)-\left(x-2\right)\right]=0\)

\(\Leftrightarrow\left(3x+1\right)\left(6x+2-x+2\right)=0\)

\(\Leftrightarrow\left(3x+1\right)\left(5x+4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{3}\\x=-\frac{4}{5}\end{cases}}}\)

b) ĐKXĐ: \(x\ne\pm\frac{1}{3}\)

\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)

\(\Leftrightarrow\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)

\(\Leftrightarrow\left(1-3x\right)^2-\left(1+3x\right)^2=12\)

\(\Leftrightarrow\left(1-3x-1-3x\right)\left(1-3x+1+3x\right)=12\)

\(\Leftrightarrow-12x=12\)

\(\Leftrightarrow x=-1\) (thỏa mãn)

Vậy x = -1

Câu b đề sai nha bạn.

undefined

a) \(x^3+9x^2+27x+27=\left(x+3\right)^3\)

b) \(3\sqrt{3x^3}+18x^2+12\sqrt{3x}+8=\left(\sqrt{3x}+2\right)^3\)

c) \(\dfrac{1}{4}-x^2=\left(\dfrac{1}{2}-x\right)\left(\dfrac{1}{2}+x\right)\)

16 tháng 1 2017

a) 

<=> 3x - 3 + x - 2 = 2x - 2 - x + 1

<=> 3x + x - 2x + x = -2 + 1 + 3 + 2

<=>    3x               = 4

<=>   x                  = 4/3

Các câu sau làm tương tự

29 tháng 9 2018

\(\left(3x-3\right)+\left(x-2\right)=\left(2x-2\right)-\left(x-1\right)\)

<=>   \(3x-3+x-2=2x-2-x+1\)

<=>  \(4x-5=x-1\)

<=> \(3x=4\)

<=>  \(x=\frac{4}{3}\)

Vậy....

11 tháng 4 2020

a/2(9x2+6x+1)=(3x+1)(x-2)

⇔2(3x+1)2= (3x+1)(x-2)

⇔ 2(3x+1)2 :(3x+1)=x-2

⇔ 2(3x+1)=x-2

⇔6x+2-x+2=0

⇔5x+4=0

⇔5x=-4

⇔x=\(\frac{-4}{5}\)

b/\(\frac{12}{1-9x^2}=\frac{1-3x}{1+3x}-\frac{1+3x}{1-3x}\)

\(\frac{12}{\left(1-3x\right)\left(1+3x\right)}=\frac{\left(1-3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}-\frac{\left(1+3x\right)^2}{\left(1-3x\right)\left(1+3x\right)}\)

⇔12=(1-3x)2-(1+3x)2

⇔-(1-3x-1-3x)(1-3x+1+3x)=--12

⇔-(-6x.2)=-12

⇔12x=-12

⇔x=-1

bạn thấy mình làm sai hay thiếu thì bạn nhớ nhắc mình nha.

4 tháng 10 2021

c) \(\sqrt{\left(x-2\right)^2}=10\)

\(x-2=10\)

\(x=12\)

d) \(\sqrt{9x^2-6x+1}=15\)

\(\sqrt{\left(3x\right)^2-2.3x.1+1^2}=15\)

\(\sqrt{\left(3x-1\right)^2}=15\)

\(3x-1=15\)

\(3x=16\)

\(x=\dfrac{16}{3}\)

4 tháng 10 2021

a) \(đk:x\ge0\)

\(pt\Leftrightarrow3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)

\(\Leftrightarrow4\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=3\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)

b) \(đk:x\ge-2\)

\(pt\Leftrightarrow3\sqrt{x+2}+12\sqrt{x+2}-2\sqrt{x+2}=26\)

\(\Leftrightarrow13\sqrt{x+2}=26\)

\(\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(tm\right)\)

c) \(pt\Leftrightarrow\left|x-2\right|=10\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\)

d) \(pt\Leftrightarrow\sqrt{\left(3x-1\right)^2}=15\)

\(\Leftrightarrow\left|3x-1\right|=15\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-1=15\\3x-1=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{3}\\x=-\dfrac{14}{3}\end{matrix}\right.\)

e) \(đk:x\ge\dfrac{8}{3}\)

\(pt\Leftrightarrow3x+4=9x^2-48x+64\)

\(\Leftrightarrow9x^2-51x+60=0\)

\(\Leftrightarrow3\left(x-4\right)\left(5x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)

a) Ta có: \(\dfrac{x+5}{3x-6}-\dfrac{1}{2}=\dfrac{2x-3}{2x-4}\)

\(\Leftrightarrow\dfrac{2\left(x+5\right)}{6\left(x-2\right)}-\dfrac{3\left(x-2\right)}{6\left(x-2\right)}=\dfrac{3\left(2x-3\right)}{6\left(x-2\right)}\)

Suy ra: \(2x+5-3x+6=6x-9\)

\(\Leftrightarrow-x+11-6x+9=0\)

\(\Leftrightarrow20-7x=0\)

\(\Leftrightarrow7x=20\)

hay \(x=\dfrac{20}{7}\)(thỏa ĐK)

Vậy: \(S=\left\{\dfrac{20}{7}\right\}\)