Phương trình \(\sin2x=\frac{1}{2}\) có số nghiệm thuộc khoảng \(\left(0;2\pi\right)\) là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
PT 2 x = − π 4 + k 2 π 2 x = 5 π 4 + k 2 π ⇔ x = − π 8 + k π x = 5 π 8 + k π k ∈ ℤ
Vì x ∈ 0 ; π ⇒ 0 < − π 8 + k π < π 0 < 5 π 8 + k π < π ⇔ 1 8 < k < 9 8 − 5 8 < k < 3 8 ⇒ k = 1 k = 0 ⇒ x = 7 π 8 x = 5 π 8
Đáp án A
Ta có c o s x + sin 2 x = 0 ⇔ cos x + 2 sin x cos x = 0 ⇔ [ cos x = 0 sin x = - 1 2 ⇔ [ x = π 2 + k π x = - π 6 + k 2 π x = 7 π 6 + k 2 π
Mà x ∈ - π ; π ⇒ x ∈ - π 2 ; π 2 ; - π 6 ; - 5 π 6 .
Chọn C
Vậy các nghiệm thuộc khoảng (0, 2π) là π 4 , π , 5 π 4
Đáp án A
Ta có sin ( 2 x − π 4 ) = sin ( x + 3 π 4 )
⇔ 2 x − π 4 = x + 3 π 4 + k 2 π 2 x − π 4 = π − x − 3 π 4 + k 2 π ⇔ x = π + k 2 π 3 x = π 2 + k 2 π
⇔ x = π + k 2 π x = π 6 + k π 3
Vì nghiệm của phương trình thuộc 0 ; π nên ta có k =1
Do đó ⇔ x = π + 2 π x = π 6 + π 3 ⇔ x = 3 π x = π 2
Vậy tổng nghiệm của phương trình là 3 π + π 2 = 7 π 2
Pt \(\Leftrightarrow2sin\left(2x+\dfrac{\pi}{3}\right)=\sqrt{3}\)
\(\Leftrightarrow sin\left(2x+\dfrac{\pi}{3}\right)=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+k\pi\\x=k\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(x\in\left(0;\dfrac{\pi}{2}\right)\)\(\Rightarrow\left[{}\begin{matrix}0< \dfrac{\pi}{6}+k\pi< \dfrac{\pi}{2}\\0< k\pi< \dfrac{\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}-\dfrac{1}{6}< k< \dfrac{1}{3}\\0< k< \dfrac{1}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Leftrightarrow\left[{}\begin{matrix}k=0\\k\in\varnothing\end{matrix}\right.\)
Vậy có 1 nghiệm thỏa mãn