tìm x,y thỏa mãn \(x+y\le6\) và \(\frac{25}{x}+\frac{1}{y}=6\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(P=\frac{3x-6\sqrt{x}+7}{2\sqrt{x}-2}+\frac{y-4\sqrt{x}+10}{\sqrt{y}-2}\)
\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{4}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{6}{\sqrt{y-1}}\)
\(=\frac{3\left(\sqrt{x}-1\right)}{2}+\frac{3}{2\left(\sqrt{x}-1\right)}+\left(\sqrt{y}-2\right)+\frac{4}{\left(\sqrt{y}-2\right)}+\frac{4}{2\left(\sqrt{y}-2\right)}+\frac{1}{2\left(\sqrt{x}-1\right)}\)
\(\ge2.\sqrt{\frac{3}{2}.\frac{3}{2}}+2\sqrt{4}+\frac{\left(1+2\right)^2}{2\left(\sqrt{x}+\sqrt{y}-3\right)}\)
\(=3+4+\frac{3}{2}=\frac{17}{2}\)
Dấu "=" xảy ra <=> x = 4 và y = 16
![](https://rs.olm.vn/images/avt/0.png?1311)
Áp dụng BĐT Bunhiacopxki dạng mẫu số được :
\(\frac{5^2}{x}+\frac{1^2}{y}\ge\frac{\left(5+1\right)^2}{x+y}\ge\frac{6^2}{6}\)
Hay \(\frac{25}{x}+\frac{1}{y}\ge6\) . Đẳng thức xảy ra khi \(\hept{\begin{cases}\frac{x}{\frac{5^2}{x}}=\frac{y}{\frac{1^2}{y}}\\x+y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5y\\x+y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\y=1\end{cases}}\)
Vậy (x;y) = (5;1)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(Q=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{1^2}{xy}+\frac{1^2}{yz}+\frac{1^2}{xz}\ge\frac{\left(1+1+1\right)^2}{xy+yz+xz}\)
\(=\frac{9}{xy+yz+zx}\ge\frac{9}{x^2+y^2+z^2}\ge\frac{9}{6}=\frac{3}{2}\).
Dấu " = " xảy ra <=> x = y =z = \(\sqrt{2}\).
Cho x, y là các số thực dương thoả mãn ĐK \(x+y\le6\)
Tìm GTNN của P=\(x+y+\frac{6}{x}+\frac{24}{y}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Bài 2 :
Tìm min : Bình phương
Tìm max : Dùng B.C.S ( bunhiacopxki )
Bài 3 : Dùng B.C.S
KP9
nói thế thì đừng làm cho nhanh bạn ạ
Người ta cũng có chút tôn trọng lẫn nhau nhé đừng có vì dăm ba cái tích
![](https://rs.olm.vn/images/avt/0.png?1311)
dùng bđt phụ \(\frac{x^2}{a}+\frac{y^2}{b}\ge\frac{\left(x+y\right)^2}{a+b}\) với bđt Cô-si nhé