Cho : a + 4b \(⋮\) 13 . Chứng minh : \(\overline{ab}\) \(⋮\) 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\overline{abcabc}=100000a+10000b+1000c+100a+10b+c\) \(=100100a+10010b+1001c\) \(=1001\left(100a+10b+c\right)=7\cdot11\cdot13\left(100a+10b+c\right)⋮7,11,13\)
b) Ta có: \(\overline{ab}-\overline{ba}=10a+b-10b-a=9a-9b\) \(=9\left(a-b\right)⋮9\)
c) Ta có: \(\overline{abc}-\overline{cba}=100a+10b+c-100c-10b-a=99a-99c=99\left(a-c\right)⋮99\)
10a + b chia hết cho 13 khi a = 1 và b = 3
a = 2 đồng thời b = a x 3
a = 3 thì b = a x 3 = 3 x 3 = 9
b luôn = a x 3
xét a + 4 b = a + 4 x 3a
= a + 12a = 13a
và 13a luôn chia hết cho 13
vậy là với b = a x3 thì 10a + b chia hết cho 13 và a + 4b cũng chia hết cho 13
Nếu a + 4b chia hết cho 13 -> 10a + 40b chia hết cho 13 (1). Lấy (1) - 39b (luôn chia hết cho 13) dc 10a +b -> 10a + b chia hết cho 13. Ngược lại cũng tương tự.
xét A=4(10a+b)-(a+4b)
=40a+4b-a-4b
=39a
=>A chia hết cho 39
do A chia hết cho 39,a+4b chia hết cho 39
=>4(10a+b ) chia hết cho 39
do (4,39)=1
=>10a+b chia hết cho 39
vậy nếu a+4b chia hết cho 39 thì 10a+b chia hết cho 39
a+4b chia hết cho 13
=>10a+40b chia hết cho 13
=>10a+40b-39b chia hết cho 13
=>10a+b chia hết cho 13
=>đpcm
ta có:\(10a+b⋮13\Rightarrow40a+4b⋮13\)
\(\Leftrightarrow39a+\left(a+4b\right)⋮13\)
mà\(39a⋮13\Rightarrow a+4b⋮13\left(đpcm\right)\)
\(\overline{ab}⋮13\Leftrightarrow10a+b⋮13\left(a,b\in N\right)\)
Theo đề ra , ta có :
\(a+4b⋮13\Rightarrow10\left(a+4b\right)⋮13\Rightarrow10a+40b⋮13\)
\(\Rightarrow10a+39b+b⋮13\)
Vì : \(39⋮13;b\in N\Rightarrow39b⋮13\)
\(\Rightarrow10a+b⋮13\) (đpcm)