cho (P) : \(y=ax^2\)và (d): y=3x - 1
biện luận theo a số giao điểm của (P) và (d)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hoành độ Giao điểm chính là nghiệm của D=P vậy ta xem nó có bao nhiêu nghiệm
x^2=2x+m-3
(x-1)^2=m-4
Nếu m=4 => có một nghiệm x=1 có 1 giao điểm
nếu m<4 => không tồn tại x => không có giao điểm
m>4 => \(\orbr{\begin{cases}x=1-\sqrt{m-4}\\x=1+\sqrt{m-4}\end{cases}}\) => có 2 điểm
a: Vì (d)//(d') nên \(\left\{{}\begin{matrix}a=-3\\b\ne-\dfrac{2}{3}\end{matrix}\right.\)
Vậy: (d): \(y=-3x+b\)
Thay x=-2 và y=-4 vào (d), ta được:
\(b-3\cdot\left(-2\right)=-4\)
=>b+6=-4
=>b=-10
Vậy: (d): y=-3x-10
b: Tọa độ B là:
\(\left\{{}\begin{matrix}y=0\\2x-2=0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y=0\\2x=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=0\end{matrix}\right.\)
(d) có hệ số góc là -3 nên a=-3
Vậy: (d): y=-3x+b
Thay x=1 và y=0 vào (d), ta được:
\(b-3\cdot1=0\)
=>b-3=0
=>b=3
Vậy: (d): y=-3x+3
2: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}2x-3=-3x+2\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
a) pt hoành độ giao điểm \(x^2+4x+4=0\Rightarrow\left(x+2\right)^2=0\Rightarrow x=-2\)
\(\Rightarrow y=-\left(-2\right)^2=-4\Rightarrow\) tọa độ giao điểm là \(\left(-2;-4\right)\)
b) Vì \((d)\parallel (d')\Rightarrow \) \(\left\{{}\begin{matrix}a=4\\b\ne4\end{matrix}\right.\Rightarrow y=4x+b\)
Vì (d') cắt (P) tại điểm có hoành độ là -1 \(y=-\left(-1\right)^2=-1\)
\(\Rightarrow\) điểm đó có tọa độ là \(\left(-1;-1\right)\)
\(\Rightarrow-1=-4+b\Rightarrow b=3\Rightarrow y=4x+3\)
a) Để đường thằng hàm số đi qua A (-1 ; 1) thì P = -1 = a . (-1)2 => a = -1
b) Tọa độ giao điểm của P và d là : -x2 = 7x + 7
< = > x2 + 7x + 7 = 0
< = > \(\Delta\)=72-4.1.7=21 > 0
Vậy PT có 2 nghiệm phân biệt x1 = \(\frac{-7+\sqrt{21}}{2}\)=> y1 = 7x1 + 7 = \(\frac{-35+7\sqrt{21}}{2}\)
x2 = \(\frac{-7-\sqrt{21}}{2}\)=> y2=7x2+7 = \(\frac{-35-7\sqrt{21}}{2}\)
Ta có: Tọa độ giao điểm của P và d là A (\(\frac{-7+\sqrt{21}}{2}\) ; \(\frac{-35+7\sqrt{21}}{2}\))
B(\(\frac{-7-\sqrt{21}}{2}\);\(\frac{-35-7\sqrt{21}}{2}\))
a. \(PTHDGD:\left(d\right)-\left(d'\right):2x+3=x-1\)
\(\Rightarrow x=-4\left(1\right)\)
Thay (1) vào (d'): \(y=-4-1=-5\)
\(\Rightarrow M\left(-4;-5\right)\)
\(a,\text{PT hoành độ giao điểm: }2x+3=x-1\\ \Leftrightarrow x=-4\Leftrightarrow y=-5\\ \Leftrightarrow M\left(-4;-5\right)\\ b,\Leftrightarrow\left\{{}\begin{matrix}-2a+b=3\\a=2;b\ne3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=7\end{matrix}\right.\)
Xét phương trình:
ax2=3x-1
\(\Leftrightarrow\)ax2-3x+1=0 (1)
Xét phương trình (1) có \(\Delta\)=(-3)2 - 4.a.1
= 9-4a
- (p) và (d) có 2 giao điểm phân biệt khi \(\Delta\)>0 \(\Leftrightarrow\) 9-4a>0 \(\Leftrightarrow\)a<\(\dfrac{9}{4}\)
- (p) và (d) có 1 điểm chung duy nhất khi \(\Delta\)=0 \(\Leftrightarrow\) 9-4a=0 \(\Leftrightarrow\) a=\(\dfrac{9}{4}\)
- (p) và (d) không có giao điểm khi \(\Delta\)<0 \(\Leftrightarrow\) 9-4a<0 \(\Leftrightarrow\) a>\(\dfrac{9}{4}\)