K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
7 tháng 8 2021

a.

Xét hai tam giác MNP và MQP có:

\(\left\{{}\begin{matrix}MN=MQ\\NP=PQ\\MP\text{ chung}\end{matrix}\right.\) \(\Rightarrow\Delta MNP=\Delta MQP\left(c.c.c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{NMP}=\widehat{QMP}\\\widehat{NPM}=\widehat{QPM}\end{matrix}\right.\) hay MP là phân giác của góc M và P

b.

Do \(\left\{{}\begin{matrix}MN=MQ\\NP=PQ\end{matrix}\right.\) \(\Rightarrow MP\) là trung trực NQ

\(\Rightarrow MP\perp NQ\) (đpcm)

NV
7 tháng 8 2021

undefined

a) Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC và \(QP=\dfrac{AC}{2}\)(2)

Từ (1) và (2) suy ra MN//QP và MN=QP

Xét tứ giác MNPQ có 

MN//QP(cmt)

MN=QP(cmt)

Do đó: MNPQ là hình bình hành

Xét ΔABD có 

Q là trung điểm của AD

M là trung điểm của AB

Do đó: QM là đường trung bình của ΔABD

Suy ra: QM//DB và \(QM=\dfrac{DB}{2}\)

hay \(QM=\dfrac{AC}{2}\)(3)

Từ (2) và (3) suy ra QM=QP

Hình bình hành MNPQ có QM=QP(cmt)

nên MNPQ là hình thoi

21 tháng 8 2017

nè , em đăng bài nhầm đó à , thứ nhất :em lm đề sai / thứ 2 : em đăng muộn qá , ko ai còn on nữa ồi 

22 tháng 8 2017

c) 22/5 + 51/9 + 11/4 + 3/5 + 1/3 + 1/4
= 22/5 +3/5 +51/9 + 1/3 +11/4+1/4
= (22/5 +3/5) +(51/9 + 3/9) +(11/4+1/4)
= 25/5 +54/9 +12/4
= 5 +6 +3
= 14
d) (1/6 + 1/10 + 1/15) : (1/6 + 1/10 - 1/15) 
= (5/30 + 3/30 +2/30 ) :(5/30 +3/30 -2/30)
= 10/30 : 6/30
= 1/3 : 1/5
= 5/3

5 tháng 6 2019

Hình dễ tự vẽ

a ) + b )Ta có \(\widehat{MPQ}=90^o\)( góc nội tiếp chắn nửa đường tròn ) ; \(EF\perp MQ\Rightarrow\widehat{EPQ}+\widehat{EFQ}=90^o+90^o=180^o\)=> tứ giác PEFQ nội tiếp đường tròn đường kính PQ 

Tương tự => \(\widehat{ENM}+\widehat{EFM}=90^o+90^o=180^o\)=> tứ giácMNEF nội tiếp => \(\widehat{PFQ}=\widehat{PEQ}\)( hai góc nội tiếp cùng chắn cung PQ trong đường tròn đường kính EQ )

\(\widehat{NFM}=\widehat{NEM}\)( hai góc nội tiếp cùng chắn cung MN trong đường tròn đường kính ME )

\(\widehat{NEM}=\widehat{PEQ}\)(  hai góc đối đỉnh ) , \(\widehat{PFQ}=\widehat{MFK}\)(  hai góc đối đỉnh ) 

\(\Rightarrow\widehat{NFM}=\widehat{KFM}\)hay FM là tia phân giác của \(\widehat{NFK}\)

c) Có : \(\widehat{NPM}=\widehat{NQM}\)(  hai góc nội tiếp cùng chắn cung MN trong đường tròn đường kính MQ )

\(\widehat{EPF}=\widehat{EQF}\)( hai góc nội tiếp cùng chắn cung EF trong đường tròn đường kính EQ )

\(\Rightarrow\widehat{NPE}=\widehat{EPL}\) => PE là phân giác trong của \(\Delta NPL\). Lại có \(PE\perp PQ\)=> PE  là phân giác ngoài của \(\Delta NPL\Rightarrow\frac{EN}{EL}=\frac{QN}{QL}\Rightarrow EN.QL=QN.EL\)(đpcm)

5 tháng 6 2019

CÓ ĐÚNG KHÔNG THẾ?

5 tháng 8 2016

a) Ta có: góc Q =góc P 

        => AQ = AP ( quan hệ giữa góc và cạnh đối diện)

     Ta có: AM + MQ = AQ

               AN + NP  = AP

       Mà MQ = NP ( MNPQ là hình thang cân).

            AQ = AP (cmt)

       => AM = AN => tam giác MAN cân tại A.

Câu b bạn tự làm nha