K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

Ta có |x+2|\(\ge0\forall x\)

|y5|\(\ge0\forall y\)

nên /x+2/+/y-5/\(\ge0\forall x;y\)

Mà theo bài ra /x+2/+/y-5/=0

suy ra

x+2=0 và y-5=0

Với x+2=0 suy ra x=-2

Với y-5=0 suy ra y=5

Vậy x=-2 và y=5

29 tháng 11 2016

Đề thiếu bucminh

13 tháng 3 2021

Bạn tham khảo cách giải:

13 tháng 3 2021

Bạn tham khảo cách giải: 

22 tháng 9 2023

(x - 13 + y)2 + (x - 6 - y)2 ≥ 0 + 0 = 0

Vì dấu "=" xảy ra nên x - 13 + y = 0 và x - 6 - y = 0

x + y = 13 và x - y = 6

x = (13 - 6) : 2 = 3,5

y = 13 - 3,5 = 9,5

Vậy x = 3,5 và y = 9,5

22 tháng 9 2023

(\(x\) - 13 + y)2 + (\(x\) - 6 - y)2 = 0

(\(x\) - 13 + y)2 ≥ 0 ∀ \(x;y\)

(\(x-6-y\))2 ≥ 0 ∀ \(x;y\)

⇒(\(x-13+y\))2 + (\(x\) - 6- y)2 = 0

⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x-6-y=0\\x-13+y+x-6-y=0\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}y=x-6\\2x=19\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6\end{matrix}\right.\)

⇒ \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\)

 

22 tháng 9 2023

(\(x\) -13 +y)2 + (\(x\) - 6 - y)2 = 0

(\(x-13+y\))2 ≥0; (\(x\) - 6 - y)2 ≥ 0∀ \(x;y\)

⇒(\(x-13+y\))2 + (\(x-6-y\))2 = 0

⇔ \(\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)

⇒ -13 - 6 + 2\(x\) = 0 ⇒ \(x\) = \(\dfrac{19}{2}\) ⇒ y = \(\dfrac{19}{2}\) - 6 ⇒ y = \(\dfrac{7}{2}\)

Vậy (\(x\);y) = (\(\dfrac{19}{2}\)\(\dfrac{7}{2}\))

23 tháng 9 2023

\(\left(x-13+y\right)^2+\left(x-6-y\right)^2=0\left(1\right)\)

Ta có :

\(\left\{{}\begin{matrix}\left(x-13+y\right)^2\ge0,\forall x;y\in R\\\left(x-6-y\right)^2\ge0,\forall x;y\in R\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}\left(x-13+y\right)^2=0\\\left(x-6-y\right)^2=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-13+y=0\\x-6-y=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x=19\\y=x-6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{19}{2}-6=\dfrac{7}{2}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}x=\dfrac{19}{2}\\y=\dfrac{7}{2}\end{matrix}\right.\) thoả mãn đề bài

AH
Akai Haruma
Giáo viên
20 tháng 10 2023

Lời giải:

Đặt $\frac{x}{2018}=\frac{y}{2019}=\frac{z}{2020}=a$

$\Rightarrow x=2018a; y=2019a; z=2020a$

$\Rightarrow (x-z)^3=(2018a-2020a)^3=(-2a)^3=-8a^3(1)$

Mặt khác:

$8(x-y)^2(y-z)=8(2018a-2019a)^2(2019a-2020a)=8a^2.(-a)=-8a^3(2)$

Từ $(1); (2)$ ta có đpcm.

25 tháng 8 2021

1 nghịch biến(a<0) 

2 đồng biến

3,4 thay các g trị tm đk vào

hojk tốt

17 tháng 8 2019

a) \(x^7+x^5+x^4+x^3+x^2+1\)

\(=\left(x^7+x^4\right)+\left(x^5+x^2\right)+\left(x^3+1\right)\)

\(=x^4\left(x^3+1\right)+x^2\left(x^3+1\right)+\left(x^3+1\right)\)

\(=\left(x^3+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)

31 tháng 7 2016

x2.(x+3)+y2.(y+5)(x+y).(x2xy+y2)=0

<=>\(x^3+3x^2+y^3+5y^2-x^3-y^3=0\)(áp dụng hằng đẳng thức)

<=> \(3x^2+5y^2=0\)

ta thấy \(3x^2\ge0\)với mọi x

             \(5y^2\ge0\) với mọi y

=> \(3x^2+5y^2\ge0\)

=> x=0 và y=0

vậy cặp số (x;y)=(0;0)

16 tháng 8 2016

quy đồng H lên rồi rút gọn

sau ko rút gọn xong thì tìm x nguyên khi H=6

17 tháng 8 2016

bạn giải rõ ra giúp mình với 

Mình ngu lắm khocroi