K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2016

Từ \(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

<=> (a+2)(b-3) = (a-2)(b+3)

<=> ab-3a+2b-6 = ab+3a-2b-6

<=> -6a = -4b

<=> \(\frac{a}{b}=\frac{3}{2}\)

<=> \(\frac{a}{2}=\frac{b}{3}\)

29 tháng 11 2016

Ta có:\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

\(\Leftrightarrow\frac{a-2+4}{a-2}=\frac{b-3+6}{b-3}\)

\(\Leftrightarrow1+\frac{4}{a-2}=1+\frac{6}{b-3}\)

\(\Leftrightarrow\frac{4}{a-2}=\frac{6}{b-3}\)

\(\Leftrightarrow\frac{2}{a-2}=\frac{3}{b-3}\)

\(\Leftrightarrow\frac{a-2}{2}=\frac{b-3}{3}\)

\(\Leftrightarrow\frac{a}{2}-1=\frac{b}{3}-1\)

\(\Leftrightarrow\frac{a}{2}=\frac{b}{3}\)

22 tháng 10 2016

a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)

=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)

\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)

Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)

b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)

Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)

Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)

 

22 tháng 10 2016

a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)

\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)

14 tháng 3 2018

ÁP dụng BĐT cô-si, ta có \(a^3+b^3+c^3\ge3abc\Rightarrow\frac{a^3+b^3+c^3}{2abc}\ge\frac{3}{2}\)

Mà \(ab\le\frac{a^2+b^2}{2}\Rightarrow\frac{a^2+b^2}{c^2+ab}\ge\frac{2\left(a^2+b^2\right)}{2c^2+a^2+b^2}\)

Tương tự, ta có 

\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\ge2\left(\frac{a^2+b^2}{a^2+c^2+b^2+c^2}+...\right)\)

Đặt \(\left(a^2+b^2;...\right)=\left(x;y;z\right)\)

Ta có VT\(\ge\frac{3}{2}+2\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=\frac{3}{2}+2\left(\frac{x^2}{xy+zx}+\frac{y^2}{ỹ+yz}+\frac{z^2}{zx+zy}\right)\)

=> \(VT\ge\frac{3}{2}+2.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+3=\frac{9}{2}\)

=> \(A\ge\frac{9}{2}\left(ĐPCM\right)\)

Dấu = xảy ra <=> a=b=c>0

22 tháng 10 2016

Câu 1:

  • Chứng minh a3+b3+c3=3abc thì a+b+c=0

\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)

\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Rightarrow0=0\) Đúng (Đpcm)

  • Chứng minh a3+b3+c3=3abc thì a=b=c

​Áp dụng Bđt Cô si 3 số ta có:

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu = khi a=b=c (Đpcm)

 

 

 

22 tháng 10 2016

Câu 2

Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)

Ta có:

\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)

\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)

\(=abc\cdot3\cdot\frac{1}{abc}=3\)

8 tháng 6 2016

Câu3: Ký hiệu [a,b] và (a,b) là gì ? Bạn.

8 tháng 6 2016

Câu 1:

\(B=\frac{1}{199}+1+\frac{2}{198}+1+\frac{3}{197}+1+...+\frac{198}{2}+1+\frac{199}{1}+1-199\)

\(=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)

\(=200\cdot\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)=200\cdot A\)

Vậy, \(\frac{A}{B}=\frac{1}{200}\).

16 tháng 6 2016

1, 

\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

<=> (a - 2)(b + 3) = (a + 2)(b - 3)

<=> ab + 3a - 2b - 6 = ab - 3a + 2b - 6

<=> 3a - 2b = -3a + 2b

<=> 6a = 4b

<=> 3a = 2b 

<=> \(\frac{a}{2}=\frac{b}{3}\)(Đpcm)

16 tháng 6 2016

2,

Có:

\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)

\(=\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)

\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\)

=> bz - cy = 0

=> bz = cy

=> \(\frac{b}{y}=\frac{c}{z}\)(1)

=> cx - az = 0

=> cx = az

=> \(\frac{c}{z}=\frac{a}{x}\)(2)

Từ (1) và (2)

=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)(Đpcm)

8 tháng 7 2019

#)Giải : (Bài này ez mak :v)

\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

\(\Rightarrow\left(a+2\right)\left(b-3\right)=\left(a-2\right)\left(b+3\right)\)(bước này mk làm tắt đi nhé)

\(\Rightarrow3a=2b\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}\)

\(\Rightarrowđpcm\)

8 tháng 7 2019

Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

=> \(\frac{\left(a-2\right)+4}{a-2}=\frac{\left(b-3\right)+6}{b-3}\)

=> \(1+\frac{4}{a-2}=1+\frac{6}{b-3}\)

=> \(\frac{4}{a-2}=\frac{6}{b-3}\)

=> \(4\left(b-3\right)=6\left(a-2\right)\)

=> \(4b-12=6a-12\)

=> \(4b=6a\)

=> \(2b=3a\)

=> \(\frac{b}{3}=\frac{a}{2}\)

30 tháng 9 2016

Vì \(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)=3 ==> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)=9= \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)

ta có \(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)\(\frac{2\left(a+b+c\right)}{abc}\)=2

==> đpcm

30 tháng 9 2016

1/a +1/b +1/c =3 hay bằng 2