CMR nếu \(\frac{a+2}{a-2}=\frac{b+3}{b-3}thì\frac{a}{2}=\frac{b}{3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=kb\\c=kd\end{cases}\)
=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{\left(kb\right)^2+b^2}{\left(kd\right)^2+d^2}=\frac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}=\frac{b^2}{d^2}\) (1)
\(\frac{ab}{cd}=\frac{kbb}{kdd}=\frac{k.b^2}{k.d^2}=\frac{b^2}{d^2}\) (1)
Từ (1) và (2) => \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\)
b) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
Ta có: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=k^3\)
Mà: \(k^3=\frac{a}{d}\) => \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
a)Ta có:\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\left(\frac{a}{c}\right)^2=\left(\frac{b}{d}\right)^2=\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a}{c}\cdot\frac{b}{d}=\frac{ab}{cd}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\left(đpcm\right)\)
ÁP dụng BĐT cô-si, ta có \(a^3+b^3+c^3\ge3abc\Rightarrow\frac{a^3+b^3+c^3}{2abc}\ge\frac{3}{2}\)
Mà \(ab\le\frac{a^2+b^2}{2}\Rightarrow\frac{a^2+b^2}{c^2+ab}\ge\frac{2\left(a^2+b^2\right)}{2c^2+a^2+b^2}\)
Tương tự, ta có
\(\frac{a^2+b^2}{c^2+ab}+\frac{b^2+c^2}{a^2+bc}+\frac{c^2+a^2}{b^2+ac}\ge2\left(\frac{a^2+b^2}{a^2+c^2+b^2+c^2}+...\right)\)
Đặt \(\left(a^2+b^2;...\right)=\left(x;y;z\right)\)
Ta có VT\(\ge\frac{3}{2}+2\left(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}\right)=\frac{3}{2}+2\left(\frac{x^2}{xy+zx}+\frac{y^2}{ỹ+yz}+\frac{z^2}{zx+zy}\right)\)
=> \(VT\ge\frac{3}{2}+2.\frac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\frac{3}{2}+3=\frac{9}{2}\)
=> \(A\ge\frac{9}{2}\left(ĐPCM\right)\)
Dấu = xảy ra <=> a=b=c>0
Câu 1:
- Chứng minh a3+b3+c3=3abc thì a+b+c=0
\(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)
\(\Rightarrow\left(a+b\right)^3-3a^2b-3ab^2+c^3-3abc=0\)
\(\Rightarrow\left[\left(a+b\right)^3+c^3\right]-3abc\left(a+b+c\right)=0\)
\(\Rightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Rightarrow0=0\) Đúng (Đpcm)
- Chứng minh a3+b3+c3=3abc thì a=b=c
Áp dụng Bđt Cô si 3 số ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Dấu = khi a=b=c (Đpcm)
Câu 2
Từ \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=0\Rightarrow\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}=3\cdot\frac{1}{abc}\)
Ta có:
\(\frac{ab}{c^2}+\frac{bc}{a^2}+\frac{ac}{b^2}=\frac{abc}{c^3}+\frac{abc}{a^3}+\frac{abc}{b^3}\)
\(=abc\left(\frac{1}{a^3}+\frac{1}{b^3}+\frac{1}{c^3}\right)\)
\(=abc\cdot3\cdot\frac{1}{abc}=3\)
Câu 1:
\(B=\frac{1}{199}+1+\frac{2}{198}+1+\frac{3}{197}+1+...+\frac{198}{2}+1+\frac{199}{1}+1-199\)
\(=\frac{200}{199}+\frac{200}{198}+\frac{200}{197}+...+\frac{200}{2}+1=\frac{200}{200}+\frac{200}{199}+\frac{200}{198}+...+\frac{200}{2}\)
\(=200\cdot\left(\frac{1}{200}+\frac{1}{199}+\frac{1}{198}+...+\frac{1}{2}\right)=200\cdot A\)
Vậy, \(\frac{A}{B}=\frac{1}{200}\).
1,
\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)
<=> (a - 2)(b + 3) = (a + 2)(b - 3)
<=> ab + 3a - 2b - 6 = ab - 3a + 2b - 6
<=> 3a - 2b = -3a + 2b
<=> 6a = 4b
<=> 3a = 2b
<=> \(\frac{a}{2}=\frac{b}{3}\)(Đpcm)
2,
Có:
\(\frac{bz-cy}{a}=\frac{cx-az}{b}=\frac{ay-bx}{c}\)
\(=\frac{abz-acy}{a^2}=\frac{bcx-baz}{b^2}=\frac{cay-cbx}{c^2}\)
\(=\frac{abz-acy+bcx-baz+cay-cbx}{a^2+b^2+c^2}=0\)
=> bz - cy = 0
=> bz = cy
=> \(\frac{b}{y}=\frac{c}{z}\)(1)
=> cx - az = 0
=> cx = az
=> \(\frac{c}{z}=\frac{a}{x}\)(2)
Từ (1) và (2)
=> \(\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\)(Đpcm)
#)Giải : (Bài này ez mak :v)
\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)
\(\Rightarrow\left(a+2\right)\left(b-3\right)=\left(a-2\right)\left(b+3\right)\)(bước này mk làm tắt đi nhé)
\(\Rightarrow3a=2b\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}\)
\(\Rightarrowđpcm\)
Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)
=> \(\frac{\left(a-2\right)+4}{a-2}=\frac{\left(b-3\right)+6}{b-3}\)
=> \(1+\frac{4}{a-2}=1+\frac{6}{b-3}\)
=> \(\frac{4}{a-2}=\frac{6}{b-3}\)
=> \(4\left(b-3\right)=6\left(a-2\right)\)
=> \(4b-12=6a-12\)
=> \(4b=6a\)
=> \(2b=3a\)
=> \(\frac{b}{3}=\frac{a}{2}\)
Vì \(\frac{1}{a}\)+\(\frac{1}{b}\)+\(\frac{1}{c}\)=3 ==> \(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)=9= \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)
ta có \(\frac{2}{ab}+\frac{2}{bc}+\frac{2}{ca}\)= \(\frac{2\left(a+b+c\right)}{abc}\)=2
==> đpcm
Từ \(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)
<=> (a+2)(b-3) = (a-2)(b+3)
<=> ab-3a+2b-6 = ab+3a-2b-6
<=> -6a = -4b
<=> \(\frac{a}{b}=\frac{3}{2}\)
<=> \(\frac{a}{2}=\frac{b}{3}\)
Ta có:\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)
\(\Leftrightarrow\frac{a-2+4}{a-2}=\frac{b-3+6}{b-3}\)
\(\Leftrightarrow1+\frac{4}{a-2}=1+\frac{6}{b-3}\)
\(\Leftrightarrow\frac{4}{a-2}=\frac{6}{b-3}\)
\(\Leftrightarrow\frac{2}{a-2}=\frac{3}{b-3}\)
\(\Leftrightarrow\frac{a-2}{2}=\frac{b-3}{3}\)
\(\Leftrightarrow\frac{a}{2}-1=\frac{b}{3}-1\)
\(\Leftrightarrow\frac{a}{2}=\frac{b}{3}\)