\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)
= \(\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}\)
=\(-\frac{x+y}{\left(x-y\right)^2}\)
=\(-\frac{x+y}{x^2-2xy+y^2}\)
\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)
\(=\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}\)
\(=-\frac{\left(x-y\right)\left(x+y\right)}{\left(x-y\right)^3}\)
\(=-\frac{x+y}{\left(x-y\right)^2}\)
\(x^3+y^3-3x^2+3x-1\\=(x^3-3x^2+3x-1)+y^3\\=(x-1)^3+y^3\\=(x-1+y)[(x-1)^2-(x-1)y+y^2]\\=(x+y-1)(x^2-2x+1-xy+y+y^2)\)
\(a,14x^2y-21xy^2+28x^2y^2=7xy\left(x-3y+4xy\right)\\ b,x\left(x+y\right)-5x-5y=x\left(x+y\right)-5\left(x+y\right)=\left(x+y\right)\left(x-5\right)\\ c,10x\left(x-y\right)-8\left(y-x\right)=10x\left(x-y\right)+8\left(x-y\right)=\left(x-y\right)\left(10x+8\right)=2\left(x-y\right)\left(5x+4\right)\)
\(d,\left(3x+1\right)^2-\left(x+1\right)^2=\left(3x+1-x-1\right)\left(3x+1+x+1\right)=2x\left(4x+2\right)=4x\left(2x+1\right)\)\(e,x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)+3xyz-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)
Bài 2:
\(M=x^2-2xy+y^2=\left(x-y\right)^2=\left(-3\right)^2=9\)
\(N=x^2+y^2=\left(x-y\right)^2+2xy=9+2.10=29\)
\(P=x^3-3x^2y+3xy^2-y^3=\left(x-y\right)^3=\left(-3\right)^3=-27\)
\(Q=x^3-y^3=\left(x-y\right)^3+3xy\left(x-y\right)=\left(-3\right)^3+3.10.\left(-3\right)=-117\)
Bài 1:
a) \(A=x^2+2xy+y^2=\left(x+y\right)^2=\left(-1\right)^2=1\)
b) \(B=x^2+y^2=\left(x+y\right)^2-2xy=\left(-1\right)^2-2.\left(-12\right)=25\)
c) \(C=x^3+3x^2y+3xy^2+y^3=\left(x+y\right)^3=\left(-1\right)^3=-1\)
d) \(D=x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=\left(-1\right)^3-3.\left(-12\right).\left(-1\right)=-37\)
a) \(=2\left(x-y\right)-\left(x^2-2xy+y^2\right)\)
\(=2\left(x-y\right)-\left(x-y\right)^2\)
\(=\left(x-y\right)\left(2-x+y\right)\)
b) \(x^3-x+3x^2y+3xy^2+y^3-y\)
\(=\left(x^3+y^3\right)+\left(3x^2+3xy^2\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2+3xy-1\right)\)
\(=\left(x+y\right)\left(x^2+y^2+2xy-1\right)\)
\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)=\(\frac{-\left(x^2-y^2\right)}{\left(x-y\right)^3}\)= \(\frac{-\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^3}\)= \(\frac{-x-y}{\left(x-y\right)2}\)
\(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}=\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}=\frac{-\left(x-y\right)\left(y+x\right)}{\left(x-y\right)^3}=\frac{-\left(y+x\right)}{\left(x-y\right)^2}\)